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Example 1 Half-duplex channel

Consider two network nodes A and B that are connected by a
half-duplex channel, i.e., it is possible to send in both directions,
but only in one direction at a time. In case A and B are sending at
the same time they will recognize that the other node is sending,
too, but they will not get any information about the data send by
the other side.
In order to avoid a deadlock due to A and B trying to start sending
repeatedly at the same time, one may use a protocol where

(a) if one side is already sending, the other side will never start
sending,

(b) if both sides start sending at the same time, both stop and
each side waits for a random time interval before trying to
send again (while obeying Rule a).



1 Introduction 2

Example 2 Randomized Quicksort

Recall that during the recursive calls of the Quicksort algorithm an
element of the list to be processes is chosen as a pivot element,
and then this list is split into the elements that are smaller and the
elements that are larger than the pivot element,
Consider the two following variants of the Quicksort algorithm:

I deterministic Quicksort, where the pivot element is chosen
according to some determinsitic procedure, e.g., is always
equal to the first element, or to the median of the first, last,
and middle elements.

I randomized Quicksort, where the pivot element is chosen
uniformly at random from all elements in the current list.
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Example 2 Quicksort

For both variants of the Quicksort algorithm there are cases where
the chosen pivot elements are bad in the sense that the tree of
partitions degenerates (and in worst case the number of
comparisons required for a list with n elements is roughly n2

instead of the average number O(n log n)):

I with deterministic Quicksort, there are rare bad inputs that
always result in a bad choice of the pivot elements,

I with randomized Quicksort, all inputs are equally good,
however, for any given input with small probability the
random choices of the algorithm may result in a bad choice of
the pivot elements.
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Example 3 The copy game

In certain game-theoretical situations, the ability to pursue a
randomized strategy makes a big difference.

The copy game

At the beginning of each round, two players A and B commit
secretly to a value xA and xB , respectively, from {0, 1}.

Player A wins if the two values are distinct.
Player B wins if both values are the same.
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Example 3 The copy game

I In case Player A follows a deterministic strategy that is known
to (or can be learned) and can be simulated by Player B, then
Player B can simply duplicate the value.
Consequently, Player A will lose all the time.

I In case Player A follows a randomized strategy where her
secret values are determined by independent tosses of a fair
coin that are not known to the other player (more precisely,
that are independent of the behavior of Player B).

Then, on average, each player wins exactly half of the rounds.

The latter holds no matter how dumb Player A and how smart
or computationally powerful Player B is.
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Excursus on the parity function ⊕

I The n-ary parity function ⊕n is the Boolean function on n
arguments that yields 1 exactly when an odd number of the
arguments is equal to 1.

I The 2-ary parity function ⊕2, which we also denote by ⊕, is
just the Exclusive-Or function (XOR function, for short), i.e.,

a⊕ b =

{
1 if a and b are distinct,

0 otherwise.

I A Boolean expression that contains only the binary parity
function ⊕ and n Boolean arguments always evaluates to the
value of the n-ary parity function applied to the same
arguments. E.g. (a1 ⊕ a2)⊕ (a1 ⊕ (a3 ⊕ a1)) is equal
to ⊕5(a1, a2, a1, a3, a1).
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Example 4 One-time pad

I Consider the situtation where A wants to send to B a word

w = w1 . . .wn, wi ∈ {0, 1} ,

while at the same time they try to prevent an eavesdropping
adversary E from getting a clue what this message might be.

Suppose A and B both know an otherwise secret random
word

r = r1 . . . rn

that has been obtained by independent tosses of a fair coin.

I Then A can simply send the message

w ⊕ r = (w1 ⊕ r1) . . . (wn ⊕ rn) .
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Example 4 One-time pad

I Even knowing the word w ⊕ r , it is impossible to get any
information about w as long as one has no relevant
information about r .

Indeed, for any fixed word w , the encrypted message w ⊕ r
attains any possible word of length n with the same probability
because r is determined by independent tosses of a fair coin.

I The technique of XOR-ing the message with a random string
is called one-time pad for the following reason.

The random word r must not be used with more than one
message. For example, if r is used with w0 and w1, then from
the two encrypted messages w0 ⊕ r and w1 ⊕ r one can easily
obtain

w0 ⊕ w1 = (w0 ⊕ r)⊕ (w1 ⊕ r) ,

hence one can tell whether w0 and w1 are the same.
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Example 5 Dining cryptographers

Three cryptographers A, B, and C eat at a restaurant. When they
find out that their bill has already been paid, they wonder whether
one of them has paid or somebody else (e.g., the NSA, which they
would dislike).
They want to apply a protocol that will determine whether one of
them has paid such that after the protocol has been executed,

I all three know whether one of them or somebody else has paid,

I anyone who has not paid will obtain no information at all
about whom of the two others might have paid.

It is assumed that all three collaborate in the protocol, i.e., behave
honestly and follow the rules of the protocol.
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Example 5 Dining cryptographers

I Any two of the cryptographers toss a fair coin in order to
obtain a common random bit, which is unknown to the third
one.

For example, A and B determine a random bit rA,B that is
unknown to C.

I For any cryptographer X let uX be the parity of the two
random bits obtained by X, e.g., let uA = rA,B ⊕ rA,C

I Then any cryptographer X publishes uX in case X has not
paid, and publishes the complement of uX, otherwise.

I Then uA ⊕ uB ⊕ uC is equal to 1 if and only if one of the three
cryptographers has paid (where we assume that at most one
person can pay the bill).
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Discrete probability measures

I Consider a chance experiment with outcomes in a set Ω where
Ω is finite or countably infinite, i.e., Ω is of the form

Ω = {ω1, . . . , ωn} or Ω = {ω1, ω2, . . .} .

I The probabilities are given by a real-valued function

Prob : Ω→ [0, 1]

such that the values Prob[ω] add up to 1.
Prob is a discrete probability distribution, (Ω,Prob) is a
discrete probability space.

I A subset of Ω is called an event. The function Prob can be
extended to all events E by letting

Prob[E ] =
∑
ω∈E

Prob[ω] .
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Uniform measure

I The uniform measure on a finite set Ω is given
by Prob[ω] = 1

|Ω| for all ω ∈ Ω.

E.g., a cast of a fair die can be modelled by the uniform
distribution on Ω = {1, . . . , 6}.

I On a countably infinite set there is no uniform measure.
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Random variables

I A random variable is a mapping X : Ω→ R.

I Any random variable X that is defined on a discrete
probability space (Ω,Prob) defines a discrete probability
measure ProbX on its range ΩX = {X (ω) : ω ∈ Ω} where

ProbX [x ] =
∑

{ω∈Ω:X (ω)=x}

Prob[ω] .

ProbX is called the distribution of X .

I We write Prob[X = x ] instead of ProbX [x ], and also use
notation such as Prob[X ≥ x ], Prob[X ∈ S ], . . . .
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Indicator variables

I The indicator variable for a set A ⊆ Ω is the random
variable X : Ω→ {0, 1} such that X (ω) = 1 holds if and only
if ω ∈ A.

Example: Ω = {1, . . . , 6}, Prob[ω] = 1
6

for all ω ∈ Ω.

Consider the indicator variable X : Ω→ R for the set of primes less
than or equal to 6

X (i) =

{
1 in case i is prim

0 otherwise

Prob[X = 0] = Prob[{1, 4, 6}] = 1/2,
Prob[X = 1] = Prob[{2, 3, 5}] = 1/2.
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Joint distribution

I Let X1, . . . ,Xm be random variables on the same discrete
probability space Ω.

I The joint distribution ProbX1,...,Xm is

ProbX1,...,Xm [r1, . . . , rm] = ∑
{ω∈Ω:X1(ω)=r1,...,Xm(ω)=rm}

Prob[ω] . (1)

I We write Prob[X1 = r1, . . . ,Xm = rm] instead
of ProbX1,...,Xm [r1, . . . , rm].
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Joint distribution

Example: Ω = {1, . . . , 6}, Prob[ω] = 1
6

for all ω ∈ Ω.

Consider indicator variables X , Y and Z for the events ω is prime,
ω is even, and ω is odd.
X , Y , and Z have the same distribution, the uniform distribution
on {0, 1}. However,

Prob[X = 1,Y = 1] =
1

6
,

Prob[X = 1,Z = 1] =
2

6
.

So the joint distribution is not determined by the individual
distributions.
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Mutually independent random variables

I Let X1, . . . ,Xm be random variables on the same discrete
probability space Ω.

I X1, . . . ,Xm are mutually independent if for any combination
of values r1, . . . , rm in the range of X1, . . . ,Xm, respectively,

Prob[X1 = r1, . . . ,Xm = rm]

= Prob[X1 = r1] · · · · · Prob[Xm = rm] .

Example: m tosses of a fair coin

Consider m tosses of a fair coin and let Xi be the indicator variable
for the event that the ith toss shows head. Then the X1, . . . ,Xm

are mutually independent and for all (r1 . . . rm) ∈ {0, 1}m
Prob[X1 = r1, . . . ,Xm = rm] = 1

2m .
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Pairwise and k-wise independence

I Random variables X1, . . . ,Xm are pairwise independent if all
pairs Xi and Xj with i 6= j are mutually independent, i.e., for
all i 6= j and all ri and rj

Prob[Xi = ri and Xj = rj ]

= Prob[Xi = ri ] · Prob[Xj = rj ] .

I The concept of k-wise independence of random variables for
any k ≥ 2 is defined similar to pairwise independence, where
now every subset of k distinct random variables must be
mutually independent.
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Mutual versus pairwise independence

I It can be shown that mutual independence implies pairwise
independence.

I For three or more random variables, in general pairwise
independence does not imply mutual independence.

I It can be shown for any k ≥ 2 that (k + 1)-wise independence
implies k-wise independence, whereas the reverse implication
is false.

I Examples of random variables that are k-wise independent but
are not mutually independent will be constructed in the
section on derandomization.
An even simpler example is the following.
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Pairwise and 3-wise independence

Example: pairwise but not 3-wise independence.

Consider a chance experiment where a fair coin is tossed 3 times
and let Xi be the indicator variable for the event that coin i shows
head. Let

Z1 = X1 ⊕ X2, Z2 = X1 ⊕ X3, Z3 = X2 ⊕ X3 .

The random variables Z1, Z2, and Z3 are pairwise independent
because for any pair i and j of distinct indices in {1, 2, 3} and any
values b1 and b2 in {0, 1} we have

Prob[Zi = b1&Zj = b2] = 1/4 .

On the other hand, Z1, Z2, and Z3 are not 3-wise independent
because for example we have Z1 = Z2 ⊕ Z3.
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Expectation

I The expectation of X is

E [X ] =
∑
ω∈Ω

Prob[ω]X (ω) ,

provided that this sum converges absolutely. If the latter
condition is satisfied, we say the expectation of X exists.

I Recall that
I
∑

i∈N ai converges to s if and only if the partial
sums a0 + . . .+ an converge to s,

I
∑

i∈N ai converges absolutely if even the sum
∑

i∈N |ai |
converges,

I absolute convergence is equivalent to convergence to the same
value under arbitrary reorderings.

I The condition on absolute convergence ensures that the
expectation is the same no matter how we order Ω.
The condition is always satisfied if Ω is finite or if X is
non-negative and the sum converges at all.
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Expectation

Example: Ω = {1, . . . , 6}, Prob[ω] = 1
6

for all ω ∈ Ω.

If we let X be the identity mapping on Ω, then

E [X ] =
∑

i∈{1,...,6}

Prob[i ] X (i) =
1

6
+

2

6
+ . . .+

6

6
=

21

6
= 3.5 .

Example: Ω = N, Prob[i ] = 1
2i+1 .

The expectation of the random variable

X : i 7→ 2i+1

does not exist because the corresponding sum does not converge∑
i∈N

Prob[i ] X (i) =
∑
i∈N

1

2i+1
2i+1 = 1 + 1 + . . . = +∞ .
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Linearity of Expectation

I Let X and X1, . . . ,Xn be random variables such that their
expectations all exist.

I Expectation is linear.

For any real number r , the expectation of rX exists and it
holds that

E [rX ] = rE [X ] .

The expectation of X1 + . . .+ Xm exists and it holds that

E [X1 + · · ·+ Xn] = E [X1] + · · ·+ E [Xn] .

I If the X1, . . . ,Xn are mutually independent, then the
expectation of X1 · . . . · Xm exists and

E [X1 · · · · · Xn] = E [X1] · · · · ·E [Xn] .
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Number of fixed points of a random permutation

I Suppose that n tokens T1, . . . ,Tn are distributed at random
among n persons P1, . . . ,Pn such that each person gets
exactly one token and all such assignments of tokens to
persons have the same probability
(i.e., the tokens are assigned by choosing a permutation
of {1, . . . , n} uniformly at random).

I What is the expected number of indices i such that Pi gets
his or her “own token” Ti?

If we let Xi be the indicator variable for the event that Pi

gets Ti , then X =
∑n

i=1 Xi is equal to the random number of
persons that get their own token.

I By linearity of expectation, the expectation of X is

E [X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ] =
n∑

i=1

(
n − 1

n
0 +

1

n
1

)
= 1 .
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Conditional distributions and expectations

I The conditional probability of an event E given an event F is

Prob[E |F ] =
Prob[E ∩ F ]

Prob[F ]
,

where this value is undefined in case Prob[F ] = 0.

I The conditional distribution Prob[.|F ] of a random variable X
given an event F is defined by

Prob[X = a|F ] =
Prob[{ω ∈ Ω: X (ω) = a} ∩ F ]

Prob[F ]
.

I The conditional expectation E [X |F ] of a random variable X
given an event F is the expectation of X with respect to the
conditional distribution Prob[X |F ], i.e.,

E [X |F ] =
∑

a∈range(X )

a · Prob[X = a|F ] .
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Markov Inequality

Proposition (Markov Inequality)

Let X be a random variable that assumes only non-negative values.
Then for every positive real number r , we have

Prob[X ≥ r ] ≤ E [X ]

r
.

Proof.

Let (Ω,Prob) be the probability space on which X is defined. Then
we have

E [X ] =
∑
ω∈Ω

Prob[ω]X (ω) ≥
∑

{ω∈Ω:X (ω)≥r}

Prob[ω]X (ω)

≥ r
∑

{ω∈Ω:X (ω)≥r}

Prob[ω] ≥ r Prob[X ≥ r ] .

ut
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The tenure game

I The tenure game is played by two players Alice and Bob.

I Initially, finitely many tokens are placed at positions that are
nonzero natural numbers.

I Then Alice and Bob alternate in their moves where always

first Bob partitions the tokens in two parts,

then Alice chooses one part that is removed, while the other
tokens move one position closer to position 0.

I Bob wins if and only if some token reaches position 0.

I Picture each token as a nontenured staff member who gets
tenure at position 0; Alice is head of department and wants to
prevent staff from getting tenure, whereas Bob is dean and
wants to give tenure to as many people as possible.
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The tenure game

Initial configuration of the tenure game.

Finitely many tokens 1, . . . ,m are placed at positions d1, . . . , dm
where the di are arbitrary nonzero natural numbers.

The moves in the tenure game.

I Partition.
Bob partitions the current set I of tokens that are not at
position 0 into two sets I0 and I1
(i.e., I is the disjoint union of I0 and I1).

II Selection.
Alice determines a bit r .

III Removal and promotion.
The tokens in Ir are removed.
The tokens in I1−r are moved on step closer to position 0
Tokens that were already at position 0 just stay there.
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Winning condition for the tenure game

Termination of the tenure game.

The tenure game ends when each token either has been removed
or has reached position 0.

Winning condition for the tenure game.

Bob wins if some token reaches position 0, otherwise, Alice wins.

I Observe that a tenure game is decided and hence may be
stopped as soon as some token has reached position 0 because
then the token will stay at position 0 and Bob will win.

However, the version of the game where the play goes on until
the termination condition holds is equivalent and somewhat
easier to analyze.
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Winning strategies for the tenure game

Observation

For any given initial configuration of the tenure game, either Alice
or Bob has a winning strategy.

The observation holds because the tenure game is a finite
two-person zero-sum game with complete information, see the
excursus on such games at the end of this section.

Question

Given an initial configuration of the tenure game, who has a
winning strategy, Alice or Bob?
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Games that Alice win and games that Bob win

Examples of initial configurations for the tenure game.

(i) 2k -1 tokens at position k .

(ii) 2k tokens at position k .

(iii) One token at each position 1 through k .

(iv) One token at each position 1 through k − 1
and two tokens at position k .

(v) Two tokens at each position 2 through k .

(vi) Two tokens at each position 2 through k − 1
and four tokens at position k .

It is not so hard to see that the odd-numbered configurations are
winning for Alice and the other configurations are winning for Bob.

Question

What is the general pattern?
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Winning configurations for Alice

A randomized strategy for Alice

Alice determines each bit r by tossing of a fair coin.

No matter what the strategy of Bob is and how Bob partitions,
when Alice plays the randomized strategy, then

each time Alice selects, any single token will be removed or
promoted with equal probabilities of 1/2.

Furthermore, since the coin tosses are independent, a token
that is initially at position d , will reach position 0 with
probabilty 1/2d .
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Winning configurations for Alice

I Consider the tenure game where initially tokens 1, . . . ,m are
placed at positions d1, . . . , dm, respectively.

I Fix any strategy for Bob.

Assume Alice plays the randomized strategy.

I Define indicator variables X1, . . . ,Xm where Xi is 1 if and only
if token i reaches position 0.

Let X = X1 + . . .+ Xm be the number of tokens that reach
the origin.

I The expectation of X is

E [X ] = E [X1+· · ·+Xm] = E [X1]+· · ·+E [Xm] =
1

2d1
+· · ·+ 1

2dm
.

For any configuration with m tokens at positions d1, . . . , dm,
we call 1

2d1
+ · · ·+ 1

2dm
the potential of the configuration.
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Winning configurations for Alice

I Consider a tenure game where the potential 1
2d1

+ · · ·+ 1
2dm

of
the intial configuration is strictly less than 1.

I In this situation, also E [X ], the expected number of tokens
that reach position 0, is strictly less than 1

Hence there must be some sequence of coin tosses
where X < 1, i.e., such that no token reaches position 0.

This means that there is a sequence of coin tosses such that
Alice wins.

I The argument above does not depend on Bob’s strategy.

That is, no matter what the strategy of Bob is, Alice can win.

As a consequence, Bob cannot have a winning strategy.

But then Alice must have a winning strategy.
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Winning strategy for Alice

Proposition

If the potential of the initial configuration is strictly less than 1,
then Alice has a winning strategy.

I How does the winning strategy according to the proposition
look like?

I A terminal configuration is a configuration where all tokens
are at position 0.

The potential of a terminal configuration is equal to the
number of its tokens

Observation

A terminal configuration is winning for Alice if and only if the
potential of the configuration is strictly less than 1.

I Idea for a strategy: Alice tries to maintain the invariant that
the potential of the current situation is strictly less than 1.
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Winning strategy for Alice

I If the initial configuration has potential strictly less than 1,
then Alice can maintain this property by the following strategy.

Strategy for Alice

Choose r such that when comparing the potentials of the two
configurations that correspond to I0 and I1, the potential that
corresponds to Ir is higher.

I Assume that no token has yet reached position 0, and consider
the partition of the set I of current tokens into I0 and I1.

If we let p, p0, and p1 be equal to the potentials that
correspond to I , I0 and I1, respectively, we have p = p0 + p1.

I After the tokens in I1−r have been promoted, the potential of
the new configuration is 2pr−1.

By choice of r we have 2pr−1 ≤ p0 + p1 = p.
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Winning strategy for Bob

I What’s about initial configurations with potential of 1 or
more?

Observation

A terminal configuration is winning for Bob if and only if the
potential of the configuration is at least 1.

I Bob wins if he can maintain the invariant that the potential is
at least 1.

I Suppose Bob partitions the set of current tokens into sets I0
and I1 where both correspond to a potential of at least 1/2.

Then the subsequent promotion step ensures that the
potential will be at least 1 again.

Strategy for Bob

Partition the set of current tokens into sets I0 and I1 such that
both sets correspond to a potential of at least 1/2.
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Bob can partition equally

I By the following lemma, the strategy for Bob is feasible .

Lemma

Let d1 ≤ . . . ≤ dm be a nondecreasing sequence of nonzero natural
numbers where 1

2d1
+ · · ·+ 1

2dm
≥ 1

2 . Then there is an index t such
that

1

2d1
+ · · ·+ 1

2dt
=

1

2
.

Proof.

I By assumption on the di , let t be minimum such
that st = 1

2d1
+ · · ·+ 1

2dt
≥ 1

2 .

I In case st = 1/2 we are done.

Otherwise, st and 1/2 are both multiples of 1
2dt

but differ by

less than 1
2dt

, a contradiction.
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Excursus on game theory

In a finite two-person game with perfect information

two players alternate in specifying moves,

the player whose turn it is to specify the next move knows the
sequence of previous moves,

there are always at most finitely many admissible moves,

any sequence of admissible moves ends after a finite number
of moves with one player winning and the other player losing.

I The situation reached in such a game after a certain sequence
of moves is called a configuration.

Configurations can be assumed to be finitely represented
because in any case one can specify a configuration by the
sequence of moves that led to the configuration.
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Excursus on game theory

The game tree of a finite two-person game with perfect
information is

a labeled tree where each node is labeled with a configuration
of the game,

the root of the tree is labeled with the initial configuration,

the children of a node are labeled in a one-to-one fashion with
the configurations that can be reached by an admissible move
from the this nodes configurations.

Observation

Game trees of finite two-person games with perfect information are
always finite.

The observation is an immediate consequence of König’s Lemma.



3 The tenure game 41

Excursus on game theory

König’s Lemma

Any finitely branching infinite tree has an infinite path.

Proof.

Let T be any finitely branching infinite tree.
We construct inductively an infinite path v0, v1, . . . on T .
As an invariant of the construction, any node on the path is
chosen such that the subtree of T below this node is infinite.
Initially, let v0 be equal to the root of T .
In the induction step, given the already constructed initial
segment v0, . . . vi , let vi+1 be equal to the least such child of vi
such that the subtree below this child is infinite.
Such a child exists because the subtree of T below vi is infinite
and vi has only finitely many children.
Furthermore, the invariant is always true, hence the construction
will not terminate and yields an infinite path on T .



3 The tenure game 42

Excursus on game theory

Definition

Consider a two-person game with players A and B.

A strategy for Player A is a function that determines the next
move of Player A whenever it is A’s turn to specify a move.

A winning strategy for Player A is a strategy such that
Player A always wins when using this strategy, no matter
what strategy Player B uses.

Strategies and winning strategies for Player B are defined
likewise in the obvious way.

Definition

A two-person game with perfect information is determined if one
of the two players has a winning strategy.
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Excursus on game theory

Theorem

Finite two-person games with perfect information are determined.

Proof. Fix any finite two-person game with perfect information.

We have already seen that the game tree T of this game is finite.
We show for every node v of T that the “subgame” that starts
at v is determined; we show this by induction on the height of the
subtree of T with root v
If the height of the subtree is 0, the node is a leave of the tree and
one of the players wins immediately.
In the induction step consider a node v where the subtree has
height h > 0 and assume that at v Player A specifies a move.
By the induction hypothesis, for all children of v the corresponding
subgames are determined. In case A has a winning strategy for
one of these subgames, then A has winning strategy from v ;
otherwise B has a winning strategy from v .
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Excursus on game theory

I Consider a two-person game with perfect information played
by A and B.
If A has a winning strategy, then A always wins when using
this strategy, no matter what strategy B uses.
If A has no winning strategy, this does not imply directly
that B has a winning strategy, but only that for any strategy
of A there is some strategy of B such that B will win.

Remark

Infinite two-person games with perfect information in general are
not determined.

I Consider an infinite two-person game where two players
alternate in specifying the next bit of an infinite sequence
and A wins if and only if the resulting sequence is contained
in a certain set C of sequences, otherwise B wins.
Using the axiom of choice, one can show that there are
certain sets C for which this game is not determined.
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A randomized algorithm for finding a cut

I In what follows, “graph” refers to a finite undirected graph.
I A cut of a graph G = (V ,E ) is a partition of V into two

disjoint subsets V0 and V1.
The weight of a cut (V0,V1) is the number of edges
between V0 and V1, i.e., the weight is

|{ {u, v} ∈ E : u ∈ V0, v ∈ V1}| .

Algorithm Cut

Input: A graph G = (V ,E ) where V = {1, . . . , n}.

Choose random bits r1, . . . , rn by independent tosses
of a fair coin.

Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).
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The Algorithm Cut

Proposition

Let G be a graph with m edges. On input G, the expected weight
of the cut returned by Algorithm Cut is m/2.
In particular, the graph G has a cut with weight at least m/2.

Proof

I Let G = (V ,E ) be a graph with m edges e1, . . . , em.

Introduce indicator variables êi where êi = 1 iff
edge ei = {ui , vi} crosses the cut returned by Algorithm Cut.

I The weight ŵG of the cut returned by Algorithm Cut is just
the sum of the êi , hence by linearity of expectation we have

E [ŵG ] = E [ê1 + . . .+ êm] = E [ê1] + . . .+ E [êm] .
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Verification of the Algorithm Cut

Proof (continued)

I So it suffices to show E [êi ] = 1/2. Indeed, we have

E [êi ] = 1 · Prob[êi = 1] + 0 · Prob[êi = 0]

= Prob[ui ∈ V0 and vi ∈ V1] + Prob[ui ∈ V1 and vi ∈ V0]

(∗)
= Prob[ui ∈ V0] Prob[vi ∈ V1]

+ Prob[ui ∈ V1] Prob[vi ∈ V0]

=
1

2
· 1

2
+

1

2
· 1

2
=

1

2

Equation (∗) holds because the assignments of nodes to the
two sides of the cut are mutually and hence pairwise
independent.
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Verification of the Algorithm Cut

Proof (continued)

I If all possible outcomes of the coin tosses resulted in a cut
with weight strictly less than m/2, then E [ŵG ] would be
strictly less than m/2.

Hence there is a sequence of coin tosses that yield a cut with
weight at least m/2.

Hence there is a cut with weight at least m/2. ut
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Derandomization by conditional expectation

I Let G = (V ,E ) be a graph with n nodes and m edges and

let α be any word of length s ≤ n.

I Let Cutα be the algorithm that works like Algorithm Cut,
except that r1 . . . rs is set equal to α.

I Let ŵG (α) be the weight of the random cut returned by
Algorithm Cutα on input G .

Note that E [ŵG (λ)] = E [ŵG ] = m
2 (λ is the empty word).

I Algorithm Cutα, with probability of 1/2 each,
sets rs+1 to 0, i.e., works like Cutα0,
sets rs+1 to 1, i.e., works like Cutα1.

In term of the expected weight of the returned cut, this means

E [ŵG (α)] =
1

2
E [ŵG (α0)] +

1

2
E [ŵG (α1)] ,

Hence at least one of the expected values on the right-hand
side is at least as large as E [ŵG (α)].
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Derandomization by conditional expectation

Derandomized Algorithm Cut (conditional expectation)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).

For s = 1, . . . , n

If E [ŵG (r1 . . . rs−10)] ≥ E [ŵG (r1 . . . rs−11)] (∗)

then rs = 0 else rs = 1.

Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).

I The algorithm returns a cut of weight wG ≥ m
2 because of

m

2
= E [ŵG (λ)] ≤ E [ŵG (r1)] ≤ E [ŵG (r1r2)] ≤ . . .

≤ E [ŵG (r1, . . . , rn−1)] ≤ E [ŵG (r1, . . . , rn)] = wG .
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Derandomization by conditional expectation

I Is the derandomized version of Cut efficient?

How complex is it to evaluate Condition (∗)?

I Consider iteration s of the for-loop of the algorithm,
assuming that r1 . . . rs−1 have already been defined.

Partition E into four sets E1, E2, E 0
3 , and E 1

3 defined by

E1 = { {j1, j2} ∈ E : j1 < s and j2 < s} ,
E2 = { {j1, j2} ∈ E : j1 > s or j2 > s} ,
E i

3 = { {j , s} ∈ E : j < s and rj = i} .

I For the edges in E1 and E2, the choice of rs does not matter.

The constructed cut will contain from E1 exactly the edges in

E ′1 = {{j1, j2} ∈ E1 : rj1 6= rj2} .

The constructed cut will contain each edge in E2 with
probability 1/2.
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Derandomization by conditional expectation

I Concerning the sets E i
3, the choice of rs does matter.

The constructed cut contains all edges from E 1−rs
3 but no

edge from E rs
3 , hence has an expected weight of

E [ŵG (r1 . . . rs−1rs)] = |E ′1|+
1

2
|E2|+ |E 1−rs

3 | .

I The expected weight is maximized by maximizing |E 1−rs
3 |, i.e.,

by maximizing the number of edges between node s and the
nodes 1, . . . , s − 1.

I This means that we let rs = 0 in case

|{j < s : {j , s} ∈ E and rj = 1}|

is at least as large as

|{j < s : {j , s} ∈ E and rj = 0}| ,

and, otherwise, we let rs = 1.
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Derandomization by conditional expectation

Derandomized Algorithm Cut (conditional expectation)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).

For s = 1, . . . , n

If |{j < s : {j , s} ∈ E and rj = 1}|
≥ |{j < s : {j , s} ∈ E and rj = 0}|

then rs = 0 else rs = 1 .

Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).

I We end up with an extremely simple deterministic algorithm.
I The randomized version of the algorithm may be used for

verifying that the deterministic version works as required.
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Derandomization by pairwise independence

I Trivial derandomization refers to simulating a randomized
algorithm for every possible value of its random source.

I Consider a randomized algorithm that on any input of size n
runs for at most t(n) steps.
The algorithm might use up to t(n) random bits, hence its
trivial derandomization runs for about 2t(n)t(n) steps.

I Now assume that the algorithm uses only log t(n) many
random bits. Then its trivial derandomization runs for a
number of steps that is about

2log t(n)t(n) = t(n) · t(n) = t(n)2 .

Derandomization method of small sample spaces

First transform a randomized algorithm into one that uses only few
random bits, then apply trivial derandomization.
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Derandomization by pairwise independence

I For suitable randomized algorithms, the sample space can be
made small by working with k-wise instead of mutually
independent random bits.

I The verification of Algorithm Cut relied solely on the fact
that each bit r1, . . . , rn is uniformly distributed and that these
bits are pairwise independent.

I How many mutually independent uniformly distributed random
bits are required to specify such n pairwise independent bits?

That is, how small can we choose the sample space?

About log n bits are sufficient!

This yields a sample space of size about n.

Trivial derandomization then yields an algorithm that runs in
polynomial time.
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Derandomization by pairwise independence

Construction of n pairwise independent random bits with
uniform distribution from a small sample space

For given n, let t = dlog(n + 1)e and let I = {1, . . . , t}.
Let random bits b1, . . . , bt be obtained by tosses of a fair coin.

Let J1, . . . , Jn be pairwise distinct nonempty subsets of I .

For i = 1, . . . , n let ri = ⊕j∈Jibi .

In connection with this construction observe that the parameter t
is chosen as the unique natural number where

2t−1 < n + 1 ≤ 2t ,

hence there are at least n sets Ji as required since n ≤ 2t − 1.
Furthermore, the size 2t of the sample space is in {n + 1, . . . , 2n}.
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Derandomization by pairwise independence

Lemma (Verification of the construction)

The random bits r1, . . . , rn obtained by the construction above are
pairwise independent and each bit is uniformly distributed.

Proof.

Fix any t > 0 and assume that random bits b1, . . . , bt are obtained
by tosses of a fair coin.
Fix any nonempty set J ⊆ {1, . . . , t} and let r = ⊕j∈Jbj .
For any fixed index s ∈ J we have,

r = ⊕j∈Jbj = (⊕j∈J\{s}bj)⊕ bs .

That is, if the bj have already been determined for all j in J \ {s},
then depending on the value of bs , the value of r will either agree
with or will differ from ⊕j∈J\sbj . But bs attains its two possible
values with probability 1/2 each and the bj are mutually
independent, hence r will be uniformly distributed in {0, 1}.
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Derandomization by pairwise independence

Proof (continued).

For any two distinct nonempty subsets J and J ′ of {1, . . . , t}, let

r =
⊕
j∈J

bj and r ′ =
⊕
j∈J′

bj .

Since the sets J and J ′ are distinct, there is some index s that is
contained in one of the sets but not in the other; w.l.o.g. we
assume s ∈ J.
Similarly to the proof of uniformity, we can then argue that

r = (
⊕

j∈J\{s}

bj)⊕ bs and r ′ =
⊕

j∈J′\{s}

bj ,

and that hence if the bj have already been determined for all j
except s, then depending on the value of bs , i.e., with
probability 1/2, the value of r will agree with or will differ from r ′,
consequently r and r ′ are mutually independent.
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Derandomization by pairwise independence

Algorithm Cutpi (Using pairwise independent random bits)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).
Let t = dlog(n + 1)e.
Let I = {1, . . . , t}.
Choose random bits b1, . . . , bt by tosses of a fair coin.
Let J1, . . . , Jn be pairwise distinct nonempty subsets of I .
For i = 1, . . . , n, let ri = ⊕j∈Jibj .
Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).

I The expected weight of the cut returned by Algorithm Cutpi
is m

2 , the analysis is essentially the same as for Algorithm Cut.
I If we let w1, . . . ,wn be the lexicographically least n words of

length t that differ from 0t , then we can simply let
Ji = {` : w i

` = 1}, where w i = w i
1 . . .w

i
t , w i

j ∈ {0, 1}.
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Derandomization by pairwise independence

Derandomized Algorithm Cut (pairwise independence)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).
Let t = dlog(n + 1)e and let m = 2t .
Let b1, . . . , bm be the m words of length t, bi = bi1 . . . b

i
t .

Let w1, . . . ,wn be the least n words of length t that
differ from 0t , w i = w i

1 . . .w
i
t .

For i = 1, . . . ,m (i.e., for all choices of the random bits),
For j = 1, . . . , n,

Let ri ,j = ⊕`=1,...,t(b
i
` ∧ w j

`). (∧ is the And-Operator)
Let V i

0 = {j : ri ,j = 0}.
Let V i

1 = {j : ri ,j = 1}.
Output: A cut (V i

0,V
i
1) of maximum weight.

I The (m × n)-matrix R with entries ri ,j can be viewed as the
product of the (m× t)-matrix B with rows b1, . . . , bm and the
(t × n)-matrix W with columns w1, . . . ,wn.
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Derandomization of Algorithm HyperCut

I A hypergraph is a pair (V ,E ) where V is the set of nodes
and E is a set of subsets of V .
The subsets in E are called hyperedges.

I A hypergraph is k-regular if all its hyperedges contain k nodes.
I A cut of a hypergraph G = (V ,E ) is a partition of V into two

disjoint subsets V0 and V1.
The weight of a cut (V0,V1) is the number of hyperedges
that intersect both V0 and V1.

Algorithm HyperCut

Input: A hypergraph G = (V ,E ) (V = {1, . . . , n}).

Choose random bits r1, . . . , rn by independent
tosses of a fair coin.

Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).
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Derandomization of Algorithm HyperCut

Proposition

Let G be a hypergraph that is k-regular for some k ≥ 2 and has m
edges. The expected weight of the cut returned by Algorithm
HyperCut on input G is (

1− 2

2k

)
m .

In particular, the graph G has a cut of at least this weight.

Proof.

For each of the edges e1, . . . , em of G introduce an indicator
variable êi where êi = 1 iff edge ei crosses the returned cut.
Then E [êi ] = (1− 2

2k
), because the probability that ei does not

cross the cut, i.e., that ei is either contained in V0 or V1 is 2/2k .
The weight of the returned cut is the sum over the êi , hence the
proposition follows by linearity of expectation. ut
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Derandomization of Algorithm HyperCut

I Let G = (V ,E ) be a hypergraph with n nodes and m edges.
I Let α be any word of length s ≤ n

Let HyperCutα be the algorithm that works like
Algorithm HyperCut, except that r1 . . . rs is set equal to α.

I Let ŵG (α) be the weight of the random cut returned by
Algorithm HyperCutα on input G .

E [ŵG (λ)] = E [ŵG ] = (1− 2/2k)m .

I With probability of 1/2 each, HyperCutα
I sets rs+1 to 0, i.e., works like HyperCutα0,
I sets rs+1 to 1, i.e., works like HyperCutα1.

In term of the expected weight of the returned cut, this means

E [ŵG (α)] =
1

2
E [ŵG (α0)] +

1

2
E [ŵG (α1)] ,

Hence at least one of the expected values on the right-hand
side is at least as large as E [ŵG (α)].
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Derandomization of Algorithm HyperCut

Derandomized Algorithm HyperCut (Conditional expectation)

Input: A hypergraph G = (V ,E ) (V = {1, . . . , n}).

For s = 1, . . . , n

If E [ŵG (r1 . . . rs−10)] ≥ E [ŵG (r1 . . . rs−11)] (∗)

then rs = 0 else rs = 1

Let V0 = {i : ri = 0}.
Let V1 = {i : ri = 1}.

Output: The cut (V0,V1).

For the weight wG of the cut returned by Algorithm HyperCut on
input G we have

(1− 2

2k
)m = E [ŵG (λ)] ≤ E [ŵG (r1)] ≤ . . .

. . . ≤ E [ŵG (r1, . . . , rn−1)] ≤ E [ŵG (r1, . . . , rn)] = wG .



4 Derandomization techniques 65

Derandomization of Algorithm HyperCut

I Is the derandomized version of HyperCut efficient?

How complex is it to evaluate Condition (∗)?

I Let êi (α) be the indicator variable for the event that edge ei
crosses the cut returned by Algorithm HyperCutα.

I By linearity of expectation, the expected value
E [ŵG (r1 . . . rs−1i)] is just the sum over the E [̂ei (r1 . . . rs−1i)].

The latter expected values are easy to compute.

Partition any edge ei into a set of small nodes of size at
most s and a set of large nodes of size strictly larger than s.

If there are two small nodes that have already been assigned
to different sides of the cut, then the expected value is 1.

Otherwise, all small nodes have been assigned to the same
side. If there are k` large nodes, then the expected values is
equal to the probability 1− 1/2k` that at least one of the
large nodes is assigned to the other side.
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Derandomization of Algorithm HyperCut

I Recall from the introduction, that random
variables X1, . . . ,Xn are k-wise independent if every subset
of k of theses variables is mutually independent.

I The verification of Algorithm HyperCut relied solely on the
fact that the bits r1, . . . , rn have been chosen according to the
uniform distribution on {0, 1} and that they are k-wise
independent.

I The construction of pairwise, i.e., 2-wise independent, random
bits in connection with the derandomization of Algorithm Cut
can be extended to an, albeit more involved, construction of
k-wise independent random bits for arbitrarily large k.

I In what follows, we present another standard construction of
k-wise independent random bits that uses algebraic methods.
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Derandomization of Algorithm HyperCut

Proposition

Let p be any prime number and let the numbers â and b̂ be chosen
uniformly and independently from {0, . . . , p − 1}.
Then the p numbers

â 0 + b̂ mod p,

â 1 + b̂ mod p,
...

â (p − 1) + b̂ mod p

are uniformly distributed in {0, . . . , p − 1} and are pairwise
independent.

(Equivalently, the proposition could be stated in terms of the finite
field with p elements.)
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Derandomization of Algorithm HyperCut

Proof.

I The random variable âi + b̂ is uniformly distributed.
If âi is already determined, by choosing b̂ uniformly, âi + b̂
assumes any value in {0, . . . , p − 1} with probability 1

p .

I Any pair of random variables âi + b̂ and âj + b̂ where i 6= j
are mutually independent.
Fix any numbers m1,m2 in {0, . . . , p − 1}. Then the system
of equations

ai + b = m1 mod p,

aj + b = m2 mod p

has a unique solution (a0, b0) with a0, b0 in {0, . . . , p − 1}.
Hence

Prob[âi + b̂ mod p = m1, âj + b̂ mod p = m2]

= Prob[â = a0, b̂ = b0] =
1

p2
.

ut



4 Derandomization techniques 69

Derandomization of Algorithm HyperCut

Algorithm Cutpi (Pairwise independence)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).
The least prime p ≥ n.

Choose â and b̂ uniformly and
independently in {0, . . . , p − 1} .

For i = 1, . . . , n, let ri = (âi + b̂) mod p.
Let V0 = {i : ri is even }.
Let V1 = {i : ri is odd }.

Output: The cut (V0,V1).

I The expected weight of the cut returned by Algorithm Cutpi
is close to m

2 .
I The analysis is basically the same as for Algorithm Cut.

(We omit some minor technical details that relate to the fact
that now the nodes are assigned to the two parts of the cut
with probability p−1

2p and p+1
2p .)
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Derandomization of Algorithm HyperCut

Derandomized Algorithm Cut (Pairwise independence)

Input: A graph G = (V ,E ) (V = {1, . . . , n}).
Let p be the least prime where n ≤ p.
For all pairs (a, b) in {0, . . . , p − 1}

For i = 1, . . . , n, let ri = (ai + b) mod p.

Let V
(a,b)
0 = {i : ri is even }.

Let V
(a,b)
1 = {i : ri is odd }.

Output: A cut (V
(a,b)
0 ,V

(a,b)
1 ) of maximum weight.

I The algorithm returns a cut of weight at least close to m
2 .

I By Bertrand’s postulate the least prime p > n is not larger
than 2n and checking any number n, . . . , 2n for primality
requires time polynomial in log n.

I A number in the range between n and 2n can be specified by
at most 1 + dlog ne bits, hence in the algorithm at most 16n2

pairs (a, b) have to be considered.
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Derandomization of Algorithm HyperCut

Proposition

Let p be any prime number and let the numbers â0, . . . , âk−1 be
chosen uniformly and independently from {0, . . . , p − 1}.
Let r1, . . . , rp be equal to the unique sequence of p numbers
in {0, . . . , p − 1} such that

âk−10k−1 + âk−20k−2+ · · · + â0 = r1 mod p,

âk−11k−1 + âk−21k−2+ · · · + â0 = r2 mod p,

âk−12k−1 + âk−22k−2+ · · · + â0 = r3 mod p,

...

âk−1(p − 2)k−1+ · · · + â0 = rp−1 mod p,

âk−1(p − 1)k−1+ · · · + â0 = rp mod p.

Then the random numbers r1, . . . , rp are uniformly distributed
in {0, . . . , p − 1} and are k-wise independent.
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Derandomization of Algorithm HyperCut

Proof.

Each ri is uniformly distributed in {0, . . . , p − 1} because assuming
that the values of â1 through âk−1 have already been determined,
the p equally probable choices for the value of â0 will result in p
pairwise distinct values for ri .

In order to demonstrate that the ri are k-wise independent, it
suffices to show that for pairwise distinct numbers i1, . . . , ik
in {1, . . . , p} and any numbers b1, . . . , bk in {0, . . . , p − 1}, we
always have

Prob[r1 = b1, . . . , rk = bk ] =
1

pk
.
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Derandomization of Algorithm HyperCut

Proof (continued).

By definition of the rj , this amounts to show that the sytem of
equations

ik−1
1 ik−2

1 . . . . . i01
...

ik−1
k−1 ik−2

k−1 . . . . . i0k−1

ik−1
k ik−2

k . . . . . i0k



ak−1

...
a1

a0

 = (b1, . . . , bk)

has a unique solution (where now the numbers appearing in the
system of equations are identified in the obvious way with elements
of the field with p elements).

Observe that the matrix in this system of equations is a
Vandermonde matrix.
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Derandomization of Algorithm HyperCut

Proof (continued).

For the Vandermonde matrix M, its determinant is given by∏
1≤j<j ′≤k

(ij ′ − ij) .

Since the ij are pairwise distinct, the determinant differs from 0,
hence the matrix is invertible, and one obtains for the aj the
unique solution M−1(b1, . . . , bk) modulo p. ut
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Derandomization of Algorithm HyperCut

Algorithm HyperCut (k-wise independence)

Input: A hypergraph G = (V ,E ) (V = {1, . . . , n}).
Let p be the least prime where n ≤ p.
Choose a0, . . . , ak−1 in {0, . . . , p − 1}

uniformly and independently.
For i = 1, . . . , n, let

ri = ak−1i
k−1 + ak−2i

k−2 + . . .+ a0 mod p .

Let V0 = {i : ri is even }.
Let V1 = {i : ri is odd }.

Output: The cut (V0,V1).

The algorithm returns a cut of expected weight of approximately(
1− 2

2k

)
m .
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Derandomized Algorithm HyperCut (k-wise independence)

Input: A hypergraph G = (V ,E ) (V = {1, . . . , n}).
Let p be the least prime where n ≤ p.
For all k-tuples ~a = (a0, . . . , ak−1) over {0, . . . , p − 1}

For i = 1, . . . , n, let

ri = ak−1i
k−1 + ak−2i

k−2 + . . .+ a0 mod p .

Let V ~a
0 = {i : ri is even }.

Let V ~a
1 = {i : ri is odd }.

Output: A cut (V ~a
0,V

~a
1 ) of maximum weight.

The algorithm returns a cut of weight that is approximately at
least

(
1− 2

2k

)
m .
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Independent sets in hypergraphs

I A hypergraph is a pair (V ,E ) where V is the set of nodes
and E is a set of subsets of V . The subsets in E are called
hyperedges.

A hypergraph is 3-regular if all its hyperedges contain
exactly 3 nodes.

Definition

In a hypergrpaph G = (V ,E ), a subset of V is called independent
if it does not contain any edge in E .

Theorem

A 3-regular hypergraph with n nodes and m ≥ n/3 hyperedges has
an independent set U where

|U| ≥ n
√
n

3
√
m
.
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Independent sets in hypergraphs

I The randomized Algorithm IndependentSet computes an

independent set U of expected size of at least |U| ≥ n
√
n

3
√
m

.

Algorithm IndependentSet

Input: A hypergraph G = (V ,E ) (V = {1, . . . , n}).
A parameter p with 0 ≤ p ≤ 1.

Choose random bits r1, . . . , rn by tosses of a biased coin
such that Prob[ri = 1] = p.

Let T = {i : ri = 1}.
Let Y = {min e : e ∈ E and e ⊆ T}
U = T \ Y .

Output: The set U.



4 Derandomization techniques 79

Independent sets in hypergraphs

I The set T is a candidate for an independent set.

I The set Y contains the least node from each hyperedge
contained in T .

I The set U is independent.

I Y is a subset of T , hence |U| = |T | − |Y |.
By linearity of expectation, we have

E [|U|] = E [|T |]−E [|Y |]

I The expected size of T is E [|T |] = np.
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Independent sets in hypergraphs

I Let D = {e ∈ E : e ⊆ T}.
Then |Y | ≤ |D|, hence E [|Y |] ≤ E [|D|].

I For each e in E , let ê be the indicator variable for the event
that e is contained in T .

The size of D is just the sum over the random variables ê.

By linearity of expectation, the expected size of D is the sum
of the expected values E [ê].

For any hyperedge e in E , by construction

E [ê] = Prob[e ⊆ T ] · 1 + Prob[e 6⊆ T ] · 0
= Prob[e ⊆ T ] = p3 .

E [|D|] = m · p3 .

I In summary, we have

E [|U|] = E [|T |]−E [|Y |] ≥ E [|T |]−E [|D|] = n ·p−m ·p3 .
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Independent sets in hypergraphs

I We have seen

E [|U|] = E [|T |]−E [|Y |] ≥ n · p −m · p3 .

I For which p ∈ [0, 1] is the term n · p −m · p3 maximum?
Assuming n ≤ 3m, the term is maximum for

p =

√
n

3m
.

Consider the function p 7→ n · p −m · p3.
Its first derivative n − 3mp2 is 0 for this value of p, while its
second derivative is negative. For p = 0, the function is 0.
For p = 1, the function evaluates to n −m < 0.

I For p =
√

n
3m , we then obtain

E [|U|] ≥ n · p −m · p3

=

(
1√
3
− 1

3
√

3

)
n
√
n√
m
≥ 1

3

n
√
n√
m
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Independent sets in hypergraphs

I By the usual argument, the expected value of |U| must be
attained for some choice of the coint tosses in
Algorithm IndependentSet, hence any 3-regular graph
with n ≤ 3m contains an independent set of the required size.

I Algorithm IndependentSet can be deradomized
I by the method of conditional expectations, where it is arranged

in the deradomized algorithm that the potential
function E [|T |]−E [|D|] does not decrease, hence is always at

least as large as the initial value 1
3
n
√
n√
m

.

How difficult is it to determine the next random bit?
I by the method of small sample spaces, using 3-wise

independent random variables that attain the value 1 with
probability p, then applying trivial derandomization.
How can such 3-wise independent random variables be
obtained (where the probability p for the value 1 may only be
approximated)?
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Sum-free subsets

Definition

A set Z of integers is sum-free if for all x , y , z in Z holds x + y 6= z .

Theorem

Every nonempty finite set Z of integers contains a sum-free
subset T of size |T | > |Z |

3 .

Proof.

Fix any set Z = {z1 < . . . < zn} of integers.

Let q be a prime number that is of the form q = 3k + 2 and that
does not divide any number in Z (e.g., choose q strictly larger
than the absolute values of all numbers in Z ).
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Sum-free subsets

Proof (continued).

Pick r in Nq := {1, . . . , q − 1} uniformly at random .

For i = 1, . . . , n, pick di ∈ Nq such that di ≡ zi · r mod q.

Each di is uniformly distributed in Nq because by primality of q,
for any fixed z the mapping r 7→ z · r is a bijection of Nq.

Let M = {k + 1, . . . , 2k + 1} und Tr = {zi : di ∈ M}.
The set Tr ist sum-free, because

zi1 + zi2 = zi3 implies di1 + di2 ≡ di3 mod q ,

where the latter cannot hold for di1 , di2 , di3 ∈ M. Furthermore,

E[|Tr |] =
∑
zi∈Z

P[di ∈ M] = |Z | |M|
|Nq|

= |Z | k + 1

3k + 1
>
|Z |
3
,

hence for some choice of r we have |Tr | > |Z |
3 . ut
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The isolating lemma

Definition

A weight function on a set X is a function w : X → R. A weight
function w on X extends to subsets of X via w(S) =

∑
a∈S w(a).

Theorem (Isolating Lemma)

Let X = {a1, . . . , am} be a set of size m > 0 and let
F = {S1, . . . ,Sk} be a nonempty set of subsets of X .
Let a weight function w on X be determined by choosing uniformly
and independently for each x in X a value w(x) in {1, . . . , 2m}.
Then with probability at least 1/2, the minimal weight

wmin = min
S∈F

w(S)

is attained by a unique set in F.
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The isolating lemma

Proof.

Call a set S ∈ F a minimum weight set if w(S) is equal to wmin.

Furthermore, call a member a of X ambiguous if there are two
minimum weight sets S− and S+ such that a /∈ S− and a ∈ S+.

Observe that there is a unique minimum weight set if and only if
no member of X is ambiguous.

It suffices to show that any given member of X is ambiguous with
probability at most 1/2m, because then the probability that X has
an ambiguous member at all is at most 1/2 .

Fix any a in X and let

F− = {S ∈ F : a /∈ S}, F+ = {S ∈ F : a ∈ S} .

If one of the sets F− or F+ is equal to F, then a is never
ambiguous, hence we can assume that both sets are nonempty.
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The isolating lemma

Proof (continued).

Assuming that w(x) has been determined for all x in X \ {a}, let

w− = min
S∈F−

∑
x∈S

w(x) and w+ = min
S∈F+

∑
x∈S\{a}

w(x) ,

and let d = w− − w+ (where d may be negative).

Then wmin = w− or wmin = w+ + w(a), and both equations hold
simultaneously if and only if w(a) = d .

In case w(a) < d , all minimum weight sets are in F+.
In case w(a) > d , all minimum weight sets are in F−.
In both cases, a cannot be ambiguous by definition of F− and F+.

Hence a can only be ambiguous in case w(a) = d , where the latter
has probability at most 1/2m because w(a) is chosen uniformly
and independently of the other weights from a set of size 2m. ut
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Crossing numbers

Planar graphs

I In what follows, the term graph refers to an undirected graph
that is simple, i.e., does neither have loops nor multiple edges.

I A graph is planar if the graph can be embedded into the plane
without crossing edges.
(We will use the notion of an embedding and other notation
such as face of an embedding without defining them and refer
to Diestel’s monograph Graph Theory.)

I Furthermore, we will assume certain properties of planar
graphs and their embeddings that are intuitively clear without
giving formal proofs.
For example, given an embedding of a planar graph G into
the plane, for any cycle (i.e., closed path) in G , part of the
plane is inside and part is outside the cycle and no face of the
embedding can intersect both parts of the cycle.
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Crossing numbers

Theorem (Euler’s formula)

Let G be a connected planar graph with n nodes and m edges such
that G has an embedding in the plance with f faces (including the
outer face). Then holds f −m + n = 2.

Sketch of proof.

Use induction on the number of cycles in G .

A graph without cycles is a tree, hence has m + 1 edges and a
single face and Euler’s formula holds.

For a plane graph with k > 0 cycles, removing an edge from a cycle
decreases both the number of edges and the number of faces by 1,
while for the resulting graph Euler’s formula holds by the induction
hypothesis.

Corollary

All embeddings of a planar graph have the same number of faces.
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Crossing numbers

Proposition

Let G be a planar graph with n nodes and m > 1 edges.
Then holds m ≤ 3n − 6.

Proof.

It suffices to prove the assertion for connected G because any
nonconnected planar graph can be transformed into a connected
planar graph by adding edges.

We can assume m ≥ 3 because G is simple, hence for m = 2 we
have n = 3 and the assertion is true.

Let fi be the number of faces of G that are bounded by i edges
where edges that are “surrounded” by a face are counted twice.

That is, we view an edge as having two “sides” and when counting
the number of edges that bound a face in fact we are counting the
sides of edges that bound the face.
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Crossing numbers

Proof (continued).

The graph G is simple and m ≥ 3, hence f1 = f2 = 0.

By counting the edges in two different ways, we obtain

f = f3 + f4 + f5 + . . . ,

2m = 3f3 + 4f4 + 5f5 + . . . ,

hence we have 0 ≤ 2m − 3f and Euler’s formula yields

0 ≤ 2m − 3f = 2m − 3(m − n + 2) = 3n − 6−m. ut
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Crossing numbers

An embedding of a graph (V ,E ) into the plane consists of

|V | pairwise distinct points of the plane, where we idenify
these points with the nodes in V ,
a curve with endpoints u and v for each edge {u, v} in E ,
where we identify these curves with the edges in E .

We want to define a notion of crossing edges and, for a given
graph, of embedding with a minimum number of crossings.

How should we count crossings of an embedding?
When are two crossings of an embedding identical?

An embedding with a minimum number of crossings shouldn’t

use “tricks” such as an edge intersecting a node that is not an
endpoint of the edge,
have unnecessary crossings such as in the case where two
edges cross several times (see below).

Thus we want to define the notion of crossing and to count
crossings in a way such that the number of crossings is increased
by using such tricks and by unnecessary crossings.
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Crossing numbers

Definition

Two edges of an embedding cross in a point if this point belongs
to both edges but is not a common endpoint.

With an ordering of nodes understood, a crossing of an embedding
is a set of two contiguous subcurves of two distinct edges such
that

the two edges cross in a point that is a common endpoint of
the two subcurves,
the other endpoints of the subcurves are the two lesser nodes
of these edges, respectively.

In the simple case where for every pair of edges there is at most
one crossing, we identify crossings with pair of edges.
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Crossing numbers

Definition

The crossing number cr(G ) of a graph G is the least k such
that G has an embedding into the plane with at most k crossings.
An embedding of a graph G into the plane is minimum if the
embedding has at most cr(G ) crossings.

For a minimum embedding, the following assertions are true.

(i) No edge can cross itself.
(ii) Two edges that are incident to a common node cannot cross.
(iii) Two edges cannot cross twice or more.
(iv) Two edges cannot cross in an endpoint of one of the edges.

In any of the situations described in (i) through (iv), the given
embedding can be transformed into an embedding of the same
graph with strictly less crossings, hence for a minimum embedding,
these situations cannot occur.
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Crossing numbers

Proposition

For any graph G holds cr(G ) ≥ m − 3n + 6.

Proof.

Transform a minimum embedding of a graph G into an embedding
of a graph G ′ where each point where two edges of G cross is
replaced by a new node, and the edges of the new graph
correspond to minimum nonzero subcurves of the old edges that
have two nodes of G ′ as endpoints.

By (i) through (iv), the graph G ′ is simple and has n+ cr(G ) nodes
and m + 2cr(G ) edges since every new node is distinct from the old
nodes and has degree 4. The proposition shown above then yields

3(n + cr(G ))− 6 ≥ m + 2cr(G ), hence

cr(G ) ≥ m − 3n + 6.
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Crossing numbers

Theorem

Let G be a graph with n nodes and m edges and assume m ≥ 4n.
Then the crossing number of G is bounded from below as follows

1

64

m3

n2
≤ cr(G ) .

Proof (Aigner and Ziegler, Proofs from the book, Chapter 32).

Let p be a real number between 0 and 1 to be determined later.

Determine a set Vp of nodes of G by tossing a coin for each node
of G such that any single node is put into Vp with probability p.

Let Gp be the subgraph of G that is induced by the set VP .
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Crossing numbers

Proof.

Let np and mp be the number of nodes and edges of the graph Gp.

Fix a minimum embedding of G and consider the embedding of Gp

that is obtained by restricting the given embedding of G to Gp.

Let xp be the number of crossings in this embedding of Gp.

Observe that xp ≥ cr(Gp), hence by the proposition above we have

E [xp −mp + 3np] ≥ 0

As usual, we have E [np] = pn and E [mp] = p2m. Furthermore,

E [xp] = p4cr(G ) .

because a crossing in the given embedding of G is also in the new
embedding if and only if all 4 pairwise distinct endpoints of two
corresponding crossing edges are in Gp.
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Crossing numbers

Proof (continued).

By linearity of expectation, the preceding discussion yields

p4cr(G )− p2m + 3pn = E [xp]−E [mp] + 3E [xp] ≥ 0, hence

cr(G ) ≥ p2m − 3pn

p4
.

Now let p = 4n
m . By assumption p ≤ 1, and we obtain

cr(G ) ≥ pm − 3n

p3
=

4n − 3n

p3
=

1

64

m3

n2
. ut
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Points on a circle

Proposition

If n points on a circle are chosen uniformly and mutually
independently, then with probability 1− 2n

2n the convex hull of
these points contains the center of the circle.

Proof.

Fix any circle. For a point x on the circle let the mirror point of x
be the unique point that differs from x and is on the line through
x and the center of the circle.

If a set P of n points is determined by a chance experiment where

(i) n points on the circle are chosen uniformly and mutually
independent,

(ii) for each such point a fair coin is tossed in order to decide
whether the point or its mirror point is put into P,

then the points in P are actually chosen uniformly and mutually
independently.
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Points on a circle

Proof (continued).

Let X be the set of all points chosen in Step i together with their
mirror points (we can assume that all these points are pairwise
distinct because with probability 1 this is indeed the case).

Call a subset of X a candidate set if the set contains for each point
in X either the point or its mirror point.

There are exactly 2n candidate sets.

The set P is uniformly distributed in the set of candidate sets.

Call a candidate set one-sided if there is a line through the center
of the circle such that the candidate set is contained in one of the
half-planes determined by the line.

The center of the circle is not in the convex hull of the points in P
if and only if P is one-sided.

There are exactly 2n candidate sets that are one-sided, hence the
probability that P is one-sided is 2n

2n . ut
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Byzantine agreement

The Byzantine agreement problem

I In the Byzantine agreement problem, n processors (or, say,
Byzantine generals, . . .) communicate with each other in
order to reach an agreement on a binary value b.

I There are bad processors that may collaborate with each other
in order to prevent an admissible agreement.
At most a fraction of 1/8 of all processors are bad.

I Each processor has an initial binary value.
The agreement must reflect to a certain extent the majority
among the initial values. More precisely, the processors must
reach an agreement that is admissible in the following sense.

(i) All good processors must agree on the same value b.
(ii) In case all the good processors have the same initial value,

then b must be equal to this value.
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Byzantine agreement

The rules for the Byzantine agreement problem

I The communication is done in rounds.
I At the beginning of each round, each processor sends

messages to all other processors.
I Processor i sees only the messages sent to Processor i .

The messages sent by a processor to different receivers might
differ.

I Before each round, the bad processors may agree on an
arbitrarily complex pattern of messages for this round.

I At the beginning, the good processors know neither the bad
processors nor their strategy.

The rationale for supposing collaboration among the bad processors
is that a protocol that succeeds against concerted attacks is likely
to succeed in the presence of random or unrelated faults.
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Byzantine agreement

Protocol ByzantineAgreement (Processor i)

Input: A binary value bi .

Fix constants t0 = 5
8n and t1 = 6

8n and let vi (1) = bi .
For rounds s = 1, 2, . . . do the following.

Send vi (s) to all other processors.
For all j 6= i , receive vj(s) from Processor j .

For l = 0, 1, let cl = |{j : vj(s) = l}|.
If c0 ≥ c1 then u(s) = 0 and c(s) = c0,

else u(s) = 1 and c(s) = c1.
(The most frequent value among v1(s), . . . , vn(s) is u(s)
and c(s) is its count.)

Obtain τ(s) ∈ {0, 1} by tossing a fair coin.
(The random bit τ(s) is the same for all processors.)
If c(s) ≥ tτ(s), then vi (s + 1) = u(s) else vi (s + 1) = 0.

If c(s) ≥ 7
8n, then assume an agreement on u(s) and

let vi (s + 1) = vi (s + 2) = . . . = u(s).
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Byzantine agreement

Proposition

Let a group of n processors communicate where all but at
most n/8 processors obey the Protocol ByzantineAgreement.
Then an admissible agreement is reached with probability 1 and in
an expected number of rounds that is constant.

Remark.

For deterministic protocols to solve the Byzantine agreement
problem, matching lower and upper bounds are known:

under the given assumptions, any deterministic protocol will
require at least n/8 + 1 rounds in worst case,
there is a deterministic protocol that reaches an agreement in
at most n/8 + 1 rounds.

(for references see the corresponding section in the monograph by
Motwani and Raghavan).

The proposition is immediate from the three following claims.
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Byzantine agreement

Claim I

In case all good processors have the same initial value, an
agreement on this value is reached at the end of the first round.

Proof of Claim I.

In case all good processors have the same initial value b, then in
the first round all good processors send b to all other processors.
So we have for each good processor u(1) = b and c(1) = cb ≥ 7

8n,
hence the processor assumes an agreement on b. ut
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Byzantine agreement

Claim II

Let s be minimum such that at the end of round s some good
processor assumes an agreement. Then all good processors assume
an agreement on the same value at the end of round s + 1.

Proof of Claim II.

Pick some processor that assumes an agreement on b at the end of
round s. In round s, by minimality of s we have for this processor

cb = c(s) ≥ 7/8 n ,

hence at least 6
8n good processors must have sent b.

Again by minimality of s, in round s + 1 then each good processor
will send b, assuming either an agreement on b or no agreement.

Consequently, all good processors will have reached an agreement
on b at the end of round s + 1. ut
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Byzantine agreement

Claim III

Suppose no good processor assumes an agreement during any of
the rounds 1 through s − 1. Then with probability at least 1/2
some processor assumes an agreement in round s + 1.

Proof of Claim III.

If some good processor assumes an agreement at the end of
round s, then we are done by Claim II, so we can assume otherwise.

Then it suffices to show that with probability at least 1/2 in
round s + 1 all good processors send the same bit.
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Byzantine agreement

Proof of Claim III (continued).

Let k0 and k1 be the number of good processors that send 0 and 1,
respectively, during round s and let k = max{k0, k1}.

We distinguish two cases and in both cases consider round s.

Case A: k < 5/8 n.

We have k0, k1 ≤ k < 5/8 n.

Hence no matter what messages the at most n/8 bad processors
send, each processor will receive strictly less than 6/8 n messages
containing the same bit.

But with probabity 1/2 the threshold tτ(s) will be equal to
t1 = 6/8 n, in which case all good processors send 0 in round s + 1.
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Byzantine agreement

Proof of Claim III (continued).

Case B: k ≥ 5/8 n.

Choose b such that k = kb.

No matter what messages the at most n/8 bad processors send,
each processor will receive at least 5/8 n messages containing bit b.

But with probabity 1/2 the threshold tτ(s) will be equal to
t0 = 5/8 n, in which case all good processors send b in round s + 1.

ut
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Stable marriages

Preference lists

Suppose there are n women F1, . . . ,Fn and n men M1, . . . ,Mn

such that each person has a prefence list of the persons of the
opposite sex, more precisely, there are strict orderings

<F1 , . . . , <Fn , <M1 , . . . , <Mn

on the set {1, . . . , n} such that women Fj prefers man Mk over
man Ml if and only if k <Fj

l (and similarly for the preferences of
men).
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Stable marriages

Marriages

Fix a number n and sets {F1, . . . ,Fn} and {M1, . . . ,Mn} of size n.

Then a marriage is a bijection π of the set {1, . . . , n}
We identify a marriage π with the binary relation

H = {(F1,Mπ(1)), . . . , (Fn,Mπ(n))} .

Definition

A marriage H is unstable if there are couples (Fi ,Mk) and (Fj ,Ml)
in H such that

l <Fi
k and i <Ml

j .

In this situation, the pair of the couples (Fi ,Mk) and (Fj ,Ml) is
called dissatisfied. A marriage is stable if it is not unstable.

Question Is there always a stable marriage?
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Stable marriages

Theorem (Marriage theorem)

Let <F1 , . . . , <Fn , <M1 , . . . , <Mn be strict orderings on {1, . . . , n}.
Then there is a stable marriage with respect to these orderings.

Proof.

The proposal algorithm below computes a stable marriage.

Remark

The marriage theorem is false in general if the distinction between
women and men is dropped, i.e., if one considers an even
number 2n of persons where

each person has a preference list of all the other persons and
one asks for a partition of the set of persons into sets of size 2
that is stable in a sense similar to the definition above.
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The proposal algorithm

Algorithm Proposal (also referred to as proposal algorithm)

Input: Strict orderings <F1 , . . . , <Fn , <M1 , . . . , <Mn on {1, . . . , n}.
Let H = ∅.
While there is an unmarried man.

Let k be mimimum such that Mk is unmarried.
Let i = min<Mk

{j : Mk has never proposed to Fj before}.
If Fi is currently unmarried, then let H = H ∪ {(Fi ,Mk)}.
If Fi is currently married to Ml and Mk <Fi

Ml ,
then let H = (H \ {(Fi ,Ml)}) ∪ {(Fi ,Mk)}.

Output: a stable marriage H.

After the least unmarried man Mk has been fixed, he proposes in
consecutive iterations of the while loop to all women that have not
already rejected or divorced him, in decreasing order of desirability.
Eventually Mk is married to the first such woman Fi where Fi is
unmarried or is married to a man Ml that in Fi ’s view is less
desirable than Mk (and Ml becomes unmarried again).
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The proposal algorithm

Proposition (Verification of the proposal algorithm)

The proposal algorithm terminates and outputs a stable marriage.

Proof.

In each iteration of the while loop, Mk proposes to some woman,
i.e., the value i is always defined because

if there is an unmarried man, then there must also be an
unmarried woman, and
Mk has not already proposed to any unmarried woman,
otherwise she had accepted and had then stayed married.

Each man proposes at most once to each woman, thus the while
loop is iterated only finitely often.

When the algorithm terminates there is no unmarried man, hence
the computed set H is a marriage.
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The proposal algorithm

Proof (continued).

Now assume for a proof by contradiction that the computed
marriage H is not stable.
Then H contains dissatisfied couples, i.e., contains couples

(Fi ,Mk) and (Fj ,Ml) such that l <Fi
k and i <Ml

j .

The sequence of partners a woman marries during the execution of
the algorithm is strictly increasing in desirability, hence Ml , who in
the view of Fi is more desirable than Fi ’s final partner, is more
desirable than all partners of Fi .

Thus Ml never proposes to Fi , otherwise she would marry him.

This contradicts the fact that Ml is married to Fj , hence has
proposed to Fj , while Ml surely proposes to Fi before he proposes
the first time to Fj . ut
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The set of all stable marriages

For the following discussion, we fix any instance of the stable
marriage problem and consider the set of all stable marriages for
this instance.
We define a relation �M on the set of stable marriages where

H �M H ′

holds for two stable marriages H and H ′ if and only if every man
has with H either the same wife as with H ′ or a wife that he
prefers to his wife with H ′ (that is, with H all men do at least as
good as with H ′).

Proposition

The relation �M is a partial ordering on the set of all stable
marriages (i.e., �M is reflexive, transitive, and antisymmetric).
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The set of all stable marriages

Men’s best stable marriage

Is there a stable marriage that is a least with respect to the �M

relation, i.e., a stable marriage where every man does at least as
good as with any other stable marriage?

We say a woman is possible for a man, if there is some stable
marriage where the man is married to this woman.

Proposition

A stable marriage H is least with respect to the relation �M if and
only if with H every man is married to the most desirable woman
among all women who are possible for him.
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The set of all stable marriages

The proposal algorithm favors the preferences of men.

Theorem

The output of the proposal algorithm is a stable marriage that is
least with respect to the �M relation.

Proof.

We proof by induction over the proposals made during a run of the
proposal algorithm that whenever a woman rejects or divorces a
man, then the woman is not possible for this man.

The theorem then follows because the proposals a man makes are
chosen without repetition in order of his preference list, hence
every man ends up being married to the most desirable woman
that did neither reject nor divorce him. By the proposition above,
this means that the ouput is least with respect to the �M relation.
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The set of all stable marriages

Proof (continued).

In the induction step, assume that man Mk proposes to woman Fi ,
who is currently married to Ml .

Case I: Mk is rejected (i.e., Fi prefers Ml to Mk).

There cannot be a stable marriage where Mk is married to Fi .

Assuming otherwise, in such a marriage, Ml could not be married
to Fi , while by induction all women more desirable to him than Fi
are not even possible for him, so he must be married to a
woman Fj who is strictly less desirable to him than Fi .

Consequently, the couples (Fi ,Mk) and (Fj ,Ml) are dissatisfied,
thus contradicting the assumption that the marriage is stable.
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The set of all stable marriages

Proof (continued).

Case II: Fi divorces Ml (i.e., Fi prefers Mk to Ml).

There cannot be a stable marriage where Ml is married to Fi .

Assuming otherwise, in such a marriage, Mk could not be married
to Fi , while by induction all women more desirable to him than Fi
are not even possible, so he must be married to a woman Fj who is
strictly less desirable to him than Fi .

Consequently, the couples (Fi ,Ml) and (Fj ,Mk) are dissatisfied,
thus contradicting the assumption that the marriage is stable.
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The set of all stable marriages

Remark

The least stable marriage with respect to the relation �M is the
greatest stable marriage with respect to a relation �F defined
like �M with roles of men and women interchanged.

So the proposal algorithm yields a stable marriage where every
man is married to the most preferrable woman possible, whereas
every woman is married to the least desirable man possible.
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The average number of proposals

Average-case complexity of the proposal algorithm.

How many proposals are made by the proposal algorithm on
average on inputs of order n, where the average is taken over all
choices of 2n strict orderings <F1 , . . . , <Fn , <M1 , . . . , <Mn?

The average number of proposals is the same as the expected
number of proposals when we choose the 2n strict orderings
uniformly at random from the set of all strict orderings
on {1, . . . , n}.
We will derive an upper bound on the number of proposals, hence
it suffices to consider the case where <F1 , . . . , <Fn are arbitrary but
fixed and the strict orderings <M1 , . . . , <Mn are chosen at random.
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The average number of proposals

Theorem (Average-case complexity of the proposal algorithm.)

The average number of proposals made by the proposal algorithm
on inputs of order n is at most O(n log n).

The theorem is an immediate consequence of the following lemma.

Lemma

Let a nonzero natural number n and strict orderings <F1 , . . . , <Fn

on {1, . . . , n} be given, and let strict orderings <M1 , . . . , <Mn

on {1, . . . , n} be chosen uniformly and independently at random.
Then the expected number of proposals made by the proposal
algorithm is at most O(n log n).

Proof.

The proof of the lemma is done in three steps.
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The average number of proposals

Proof (continued).

Step 1 (replacing random inputs by a random choice).

By the Principle of Deferred Decisions, the probabilities for the
various possible runs of proposal algorithm and, in particular, the
expected number of proposals remains the same if

instead of choosing <M1 , . . . , <Mn in advance and always
choosing for the next proposal the woman Fi that is most
desirable to Mk and has not already been proposed to by Mk ,
Mk chooses a woman Fi uniformly at random from all
women to whom he has not already proposed.

Observe that when Fi is determined in an iteration of the proposal
algorithm, the restriction of <Mk

to the set of all women to
whom Mk has not already proposed has not been relevant before,
thus by choice of <Mk

all possible strict orderings on the latter set
of women are equally probable.
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The average number of proposals

Proof (continued).

Step 2 (transition to the amnesiac version).

Next consider an amnesiac version of the proposal algorithm where
in each iteration Mk chooses the next woman to propose to

not uniformly at random from the set of all women to
whom Mk has not proposed before
but uniformly at random from the set of all women.

If an unmarried man proposed another time to the same woman, he
will be rejected because this woman must have rejected or divorced
him in the past and thus is now married to a more desirable man.

Consequently, the amnesiac and the standard version of the
proposal algorithm differ only in so far as with the amnesiac version
there may occur additional proposals that are rejected anyway.

In summary, the expected number of proposals for the amnesiac
version is at least as large as for the standard version.
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The average number of proposals

Proof (continued).

Step 3 (anonymizing men).

With the amnesiac version of the proposal algorithm all men can
be viewed as behaving the same, hence for each iteration

instead of asking which man Mk proposes to which woman
and whether he is rejected or not,
we may simply ask whether a married or an unmarried
woman is chosen.

The amnesiac version makes exactly one proposal per iteration and
the algorithm terminates when the last unmarried woman is chosen.

Consequently the amnesiac version of the proposal algorithm can
be analyzed like the coupon collector’s problem with n types of
coupons (where choosing an unmarried women corresponds to
obtaining a new type of coupon), and the theorem follows. ut
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Excursus on Harmonic numbers

Definition

Then nth harmonic number is Hn = 1 + 1
2 + · · ·+ 1

n .

Proposition

For all n we have for the nth harmonic number Hn

ln n ≤ Hn ≤ ln n + 1 .

Proof.

Let h be the step-like function on the nonnegative reals that
attains the value 1/i in the interval [i − 1, i).

The integral over h from 1 to n is equal to Hn − 1.
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Excursus on Harmonic numbers

Proof (continued).

For x ≥ 1, the function h is bounded from above by g+ : x 7→ 1/x
and from below by g− : x 7→ 1/(x + 1).

The integral over g+ from 1 to n is ln n.

The integral over g− from 1 to n is ln(n + 1)− ln 2.

In summary, we have for all n ≥ 1

ln n− ln 2 ≤ ln(n + 1)− ln 2 ≤ Hn − 1 ≤ ln n . ut
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Excursus on the geometric distribution

Definition (Geometric distribution)

The geometric distribution with probability p is the distribution on
the set of natural numbers where

Prob[0] = 0 and Prob[i ] = (1− p)i−1p for all i > 0 .

Remark

Consider a not necessarily fair coin with probability p for heads.
The random variable that is equal to the number of times we have
to flip the coin in order to obtain outcome heads at least once has
a geometric distribution with probability p.
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Excursus on the geometric distribution

Proposition (Geometric distribution)

Let X be a random variable that is geometrically distributed with
nonzero probability p. Then the expected values of X is 1/p.

Proof.

Let q = 1− p, hence Prob[X = i ] = qi−1p for i 6= 0.

The expectation of X is E [X ] =
∑∞

i=1 iq
i−1p = p

∑∞
i=1 iq

i−1 .

For any real x where −1 < x < 1, we have

1 + x + x2 + · · · =
1

1− x
, hence 1 + 2x + 3x2 + · · · =

1

(1− x)2

by differentiating both sides of the former equation (recall that for
such x the former power series can be differentiated term by term).

Substituting q for x , we obtain E [X ] = 1/p. ut
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Excursus on the coupon collector’s problem

The coupon collector’s problem

Consider the random experiment where in every round s = 1, 2, . . .
one of n type of coupons is chosen uniformly at random.

Let X be equal to the minimum s such that all n types of coupons
have occurred in rounds 1 through s.

The coupon collector’s problem asks for the probabilities of the
form Prob[X = m] and for the expectation of X .

Proposition (Expected waiting time of the coupon collector)

In the coupon collector’s problem with n types of coupons, the
expected number of rounds before all types of coupons have
occured at least once is equal to nHn, hence is at most O(n log n).
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Excursus on the coupon collector’s problem

Proof.

As before, let X be minimum such that all types of coupons occur
in round 1 through X .

Let the ith new outcome occur in round si (hence s1 = 1, sn = X ).

For i = 1, . . . , n, let Ii = {si−1 + 1, . . . , si}, where we let s0 = 0.

Let Xi = |Ii | = si − si−1 and observe X = X1 + · · ·+ Xn.

The probability for a new outcome in round s ∈ Ii is pi = n−i+1
n .

That is, Xi has a geometrical distribution with probability pi , hence

E [X ] =
n∑

i=1

E [Xi ] =
n∑

i=1

1

pi
=

n∑
i=1

n

n − i + 1
= n

n∑
i=1

1

i
= nHn

The proposition follows by the upper bound ln n + 1 for the
harmonic number Hn. ut
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Yao’s Minimax Principle

Complexity of algorithms

The complexity of an algorithm is usually measured with respect to
the size of the input, where size may for example refer to

the length of a binary word describing the input,
the number of nodes in an input graph,
the number of elements in an input list.

Furthermore, one may be interested in

the worst-case complexity, i.e., the complexity on the worst
input of a given size, or in
the average-case complexity, i.e., the average complexity over
all inputs of the same size.

Finally, the considered type of complexity may be

the running time, the number of comparisons made, . . . .
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Yao’s Minimax Principle

Complexity of problems: lower and upper bounds

The complexity of a problem is specified by lower and upper
bounds on the complexity of algorithms that solve the problem:

lower bounds are obtained by proving (e.g., using
combinatorial arguments) that no algorithm can have a
complexity smaller than the lower bound under consideration,
upper bounds are usually obtained by constructing an
algorithm for the given problem that is correct and has
complexity of at most the upper bound under consideration.

The aim is to find matching lower and upper bounds

If one can derive matching lower and upper bounds for a problem,
then the algorithm that yields the upper bound has minimum
complexity. Similarly, close lower and upper bounds imply that the
complexity of the corresponding algorithm is close to minimum.
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Yao’s Minimax Principle

Las Vegas and Monte Carlo algorithms

A randomized algorithm is a

Las Vegas algorithm if the algorithm is always correct,
Monte Carlo algorithm if the algorithm may be incorrect.

For a Las Vegas algorithm, the outcomes of the underlying source
of randomness have no influence on the correctness of the result,
however they may influence the running time or other parameters.

Examples

A typical example of a Las Vegas algorithm is randomized
quicksort (i.e., the pivot elements are chosen uniformly at random).

A typical example of a Monte Carlo algorithm is integration by
randomized sampling (i.e., in order to obtain an estimate for the
area of a geometric figure inside the unit square, pick points in the
unit square independently and uniformly at random and let the
area be equal to the fraction of points inside the figure).
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Yao’s Minimax Principle

Worst-case complexity of Las Vegas algorithms

In what follows, we consider Las Vegas algorithms and their
expected complexity in worst case, that is, the expected complexity
on the worst input of any given size.

On first sight, it appears to be hard to obtain good lower bounds
on the expected complexity of a Las Vegas algorithm in worst case.

Yao’s Minimax Priniciple, which is discussed in detail below,
asserts that for any problem and

for any fixed probability distribution on the inputs of some
given size, any lower bound on the average-case complexity of
deterministic algorithms (where the algorithm may depend on
the probability distribution)
is also a lower bound on the expected complexity in worst
case of Las Vegas algorithms.
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Yao’s Minimax Principle

Inputs, programs, and the cost function

We consider problems with a notion of size for the inputs such that
for each size n there are

a finite set In of inputs of this size,
a finite set An of all correct deterministic algorithms for
inputs in In,
a cost function kn : A× I → N,

where kn(A, I ) is equal to the cost of applying algorithm A to
input I .

This rather abstract setup is particularly suited for black-box
algorithms like randomized quicksort, which is considered below.

Definition

An algorithm for sorting is a black-box algorithm if an input list
x1, . . . , xn can only be accessed by queries of the form “xi < xj?”.



8 Yao’s Minimax Principle 138
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Example Randomized quicksort

Randomized quicksort is a black-box algorithm that sorts input lists
of pairwise distinct items with respect to a strict linear ordering <.

Randomized quicksort works like deterministic quicksort but in the
recursive calls the pivot element for splitting the current input list
is chosen uniformly at random from the input list.

The size of an input is equal to the number of items in the list and

An is the set of all deterministic black-box algorithms that
correctly sort lists of n items,
In can be assumed to be equal to the set of all permutations
of the set {1, . . . , n} (because of the black-box access),
k(A, I ) is equal to the number of queries of the
form “xi < xj?” that algorithm A asks on input I .

The set An can be chosen to be finite by considering only
algorithms that never ask the same query twice and by identifying
an algorithm with its behaviour as discussed below.
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Yao’s Minimax Principle

Representing Las Vegas algorithms by distributions

Yao’s Minimax Principle is not formulated in terms of Las Vegas
algorithms but is about situations where for each n, a deterministic
algorithm is chosen randomly from the finite set An of all correct
deterministic algorithms according to some probability distribution.

We will apply the principle to Las Vegas algorithms that induce for
each n a probability distribution σn on the set An of all correct
deterministic algorithms in such a way that all relevant features of
the algorithm are represented.

Here for each n, the induced probability distribution σn determines
for each A in An the probability Probσn [A] that on inputs of size n
the original Las Vegas algorithm behaves like algorithm A.

As an example, we argue next that a representation by probability
distributions on the sets An is possible for all black-box sorting
algorithms of Las-Vegas type.
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Representing Las Vegas algorithms by distributions

When asking only for the expected number of comparisons that a
given black-box sorting algorithm of Las-Vegas type makes when
sorting lists of size n, the relevant features of the algorithm can be
represented by a probability distribution σn on the set An of
correct deterministic black-box algorithms for sorting such lists.

First, since we are only interested in the number of comparisons
made, any correct deterministic black-box algorithm for sorting can
be identified with its behavior, i.e.,

with the mapping that determines for any given situation
whether another and, if so, which comparison is made,
where by situation we refer to the previously asked
queries “xi < xj?” and their answers.

Note in this connection that the output of a black-box algorithm
must be determined by the comparisons made together with the
corresponding answers.
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Representing Las Vegas algorithms by distributions

Since it suffices to consider black-box algorithms that never ask
the same query twice, there are only finitely many possible
behaviors of such algorithms, hence we can indeed assume that the
set An of correct deterministic black-box algorithms is finite.

Then any Las Vegas algorithm can be identified with the
probability distribution σn on An where the probability of any
algorithm A in An is just the probability that the given Las Vegas
algorithm and A behave the same (on all possible inputs).

Conversely, any probability distribution σn on An can be viewed as
a randomized algorithm Aσn where on any given input initially
some deterministic algorithm is chosen according to σn.

When going from a Las Vegas algorithm to the corresponding
probability distribution σn and then going to the algorithm Aσn ,
the initial Las Vegas algorithm and Aσn will have the same
probabilities for the various possible behaviors.
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Remark

Any sequence of probability distributions σ0, σ1, . . . on A0,A1, . . .
can be viewed as representing a (generalized) Las Vegas algorithm.

In case the sequence of distributions is not given effectively, the
corresponding Las Vegas algorithm may not be effective.

As long as we are only interested in lower bounds, considering also
such not necessarily effective generalized Las Vegas algorithms is
fine.
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Yao’s Minimax Principle

Remark

Consider the representation of a Las Vegas algorithm by probability
distributions σn on the set An of correct algorithms. Then for
inputs of size n, the expected costs in worst case are given by

max
I∈In

∑
A∈An

Probσn [A] · kn(A, I ).
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Theorem (Yao’s Minimax Principle)

Let A and I be nonempty finite sets. Let k : A× I → N be a cost
function, and let σ and τ be probability distributions on A and I.
Let Aσ be a random variable with values in A and distribution σ,
and let Iτ be a random variable with values in I and distribution τ .
Then we have

min
A∈A

E [k(A, Iτ )] ≤ max
I∈I

E [k(Aσ, I )] . (2)

Remark

In Yao’s Minimax Principle, we have in inequality (2) on the

left-hand side the average costs on inputs chosen according
to τ for the best deterministic algorithm (which “knows” τ),
right-hand side the expected costs for the randomized
algorithm determined by σ on the worst input in I.
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Proof of Yao’s Minimax Principle.

In order to demonstrate the theorem, we show for

k̃ =
∑

(A,I )∈A×I

Probσ[A] · Probτ [I ] · k(A, I )

that we have

min
A∈A

E [k(A, Iτ )] ≤ k̃ ≤ max
I∈I

E [k(Aσ, I )].

While this is not used in what follows, observe that in case the
random variables Iτ and Aσ are mutually independent, we have

k̃ = E [k(Aσ, Iτ )].
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Proof of Yao’s Minimax Principle (continued).

By choice of k̃ , we obtain

min
A∈A

E [k(A, Iτ )] ≤
∑
A∈A

Probσ[A] ·E [k(A, Iτ )]

=
∑
A∈A

Probσ[A]
∑
I∈I

Probτ [I ] · k(A, I )

= k̃

=
∑
I∈I

Probτ [I ]
∑
A∈A

Probσ[A] · k(A, I )

=
∑
I∈I

Probτ [I ] ·E [k(Aσ, I )] ≤ max
I∈I

E [k(Aσ, I )].

ut
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Example Finding empty columns.

Let {0, 1}n×n be the set of Boolean (n × n) matrices.

A column of a Boolean matrix is said to be empty if all entries in
the column are equal to 0.

A black-box algorithm for deciding whether a given quadratic
Boolean matrix has an empty column is a correct algorithm for this
problem that accesses its input matrix only by queries of the form
“Is the entry in row i and column j equal to 0?”.

Let the size of an input in {0, 1}n×n be equal to n, and let

In be equal to {0, 1}n×n,
An be the set of all deterministic black-box algorithms that
decide correctly for inputs of size n whether the input has an
empty column,
kn(A, I ) be equal to the number of entries in I that
algorithm A queries, i.e., checks for being 0, on input I .
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Proposition (Upper bound)

There is a black-box Las Vegas algorithm that correctly decides
whether a Boolean matrix has an empty column such that for
matrices of size (n × n) the expected number of queries in worst
case is at most

gupper(n) =
n(n + 1)

2
.

Proof.

Consider the algorithm that chooses a permutation π of {1, . . . , n}
uniformly at random and then, until enough information has been
obtained, successively checks the columns π(1), π(2), . . . by
checking in each column successively the rows π(1), π(2), . . ..

On an input that has an empty column, the expected number of
checked columns is at most (n + 1)/2, while on any other input the
expected number of checks per column is at most (n + 1)/2. ut
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Proposition (Lower bound)

For any black-box Las Vegas algorithm that correctly decides
whether a Boolean (n × n) matrix has an empty column, the
expected number of queries in worst case is at least

glower(n) =
n(n + 1)

2
.

Proof.

By the discussing above, we can assume that any correct black-box
Las Vegas algorithm can be represented by a probability
distribution σn on An, hence the assertion of the proposition can
be rephrased as

glower(n) ≤ max
I∈In

E [k(Aσn , I )] .
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Proof (continued).

By Yao’s Minimax Principle, we have for all probability
distributions σn on An and τn on In,

min
A∈An

E [k(A, Iτn)] ≤ max
I∈In

E [k(Aσn , I )] . (3)

Thus in order to prove the proposition, it suffices to specify for
all n a probability distribution τn on In such that the function
glower provides lower bounds for the left-hand side of inequality (3).

In fact, it suffices to specify for any fixed n and for any ε > 0 a
probability distribution τ εn on In such that

(1− ε) glower(n) ≤ min
A∈An

E [k(A, Iτεn )] .
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Proof (continued).

In order to specify for given n and ε > 0 a probability distribution
τ εn on In,

let Dn be the set of all Boolean (n × n) matrices that have
exactly one entry 1 per column.

Then define τ εn such that

the subset Dn of In has probability 1− ε and the distribution
within this set is uniform,
the set In \ Dn has probability ε and the distribution within
this set is again uniform.
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Proof (continued).

A correct deterministic algorithm for the empty column problem
can reject an input in Dn only after reading at least one symbol 1
in every column.

For a matrix chosen uniformly at random from Dn, for each
column the expected number of entries that have to be read before
the single 1 is found is

n∑
i=1

i

n
=

n + 1

2
.

Hence the expected number of entries that have to be read in total
is n(n+1)

2 = glower(n), where the expectation is with respect to
choosing the input uniformly at random from Dn, which is done
with probability (1− ε). ut
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Excursus on game theory

Matrix games

A matrix game (A,I, k) is played by two players. The first player
selects a strategy A from a finite set A, the second player selects a
strategy I from a finite set I, and the first and second player try to
minimize and to maximize, respectively, the payoff k(A, I ).

A matrix game can be represented by a matrix with |A| rows
and |I| columns that has entries of the form k(A, I ).

As indicated by the notation used above, the situation of Yao’s
Minimax Principle can be viewed as a matrix game where the first
player selects an algorithm from A and the second player selects an
input from I, while the matrix contains entries of the form k(A, I ).

In technical terms, matrix games are finite two-player zero-sum
games with incomplete information.
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Excursus on game theory

Example Two finger morra.

In the game of two finger morra each of two players show
simultaneously either one or two fingers.
Let k ∈ {2, 3, 4} be the total count of fingers shown.

In case k is even, Player I has to pay k units to Player II,
In case k is odd, Player I is paid k units by Player II.

The payoff in this game can be represented by the matrix(
2 −3
−3 4

)
,

where the rows and columns correspond to the strategies in
the set A = I = {1, 2} of Player I and II, respectively, and the
entry k(i , j) in row i and column j is equal to the loss of
Player I.



8 Yao’s Minimax Principle 155

Excursus on game theory

Mixed strategies

In a matrix game (A, I, k), the strategies in A and I are
called pure strategies for the first and second player, respectively.

A mixed strategy for a player in a matrix game is a probability
distribution on the set of strategies for this player, which we
identify with a corresponding random variable Aσ or Iτ .

When mixed strategies are allowed, the first and second player try
to minimize and maximize, respectively, the expected payoff

E [k(Aσ, Iτ )] =
∑

(A,I )∈(A,I)

Probσ[A] · Probτ [I ] · k(A, I ) .
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Example Two finger morra (continued).

Recall the payoff matrix K for the game of two finger morra

K =

(
2 −3
−3 4

)
.

Any player who plays a known pure strategy will lose.
In case both players play mixed strategies with probabilities
of 1/2 for each of their two respective pure strategies, the
expected payoff of Player I (and then also of Player II) is

E [k(Aσ, Iτ )] =
∑

(A,I )∈(A,I)

Probσ[A] · Probτ [I ] · k(A, I )

=
1

4
(2− 3− 3 + 4) = 0.

In fact, one of the players has a better strategy (see exercises).
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Definition

For a matrix game (A, I, k), a mixed strategy σ∗ for Player I is
optimal, if it holds that

max
τ

E [k(Aσ∗ , Iτ )] = min
σ

max
τ

E [k(Aσ, Iτ )]. (4)

Similarly, a mixed strategy τ∗ for Player II is optimal, if it holds
that

min
σ

E [k(Aσ, Iτ∗)] = max
τ

min
σ

E [k(Aσ, Iτ )]. (5)

Remark

In a matrix game, each player has an optimal strategy, which,
however, is not necessarily unique. Here it suffices to observe that
payoffs, hence also expected payoffs are bounded, and that the set
of mixed strategies of each player is compact (in the sense of
calculus), hence all minima and maxima in the definition of optimal
strategy exist and are attained for appropriate mixed strategies.
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Excursus on game theory

Remark

By playing an optimal mixed strategy σ∗, Player I can enforce that
the expected payoff is at most

k∗1 = max
τ

E [k(Aσ∗ , Iτ )] = min
σ

max
τ

E [k(Aσ, Iτ )],

no matter what mixed strategy Player II plays.

Similarly, by playing an optimal mixed strategy τ∗, Player II can
enforce that the expected payoff is at least

k∗2 = min
σ

E [k(Aσ, Iτ∗)] = max
τ

min
σ

E [k(Aσ, Iτ )].

Remark

Observe that the values k∗1 and k∗2 do not depend on the choice of
the optimal strategies σ∗ and τ∗ that occur in their definitions.
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Remark

For any matrix game it holds that k∗2 ≤ k∗1 .

For a proof, assume that the two players play the optimal
strategies σ∗ and τ∗, which results in the expected payoff

k∗ = E [k(Aσ∗ , Iτ∗)].

By optimality of σ∗, the expected payoff k∗ is at least k∗2 and by a
similar argument using the optimality of τ∗ we obtain

k∗2 ≤ k∗ ≤ k∗1 .

Von Neumann’s celebrated Minimax Theorem asserts that for
every given matrix game the values k∗2 and k∗1 are the same.

Before we review this theorem (without proof), we derive as an
easy consequence that every matrix game has equilibrium points.
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An equilibrium point of a two-person game is a pair of mixed
strategies such that neither player can strictly improve his payoff
unilaterally, i.e., by switching to another strategy while the other
player keeps his strategy.

Definition (Equilibrium point)

For a matrix game (A, I, k), a pair (σ0, τ0) of mixed strategies for
the first and second player, respectively, is an equilibrium point in
case

for all mixed strategies σ of Player I it holds that

E [k(Aσ0 , Iτ0)] ≤ E [k(Aσ, Iτ0)],

and for all mixed strategies τ of Player II it holds that

E [k(Aσ0 , Iτ )] ≤ E [k(Aσ0 , Iτ0)].
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Remark

Assume k∗2 = k∗1 and let σ∗ and τ∗ be arbitrary optimal strategies
for Player I and II. Then the pair (σ∗, τ∗) is an equilibrium point.

For a proof, assume that the two players play the strategies σ∗

and τ∗, with expected payoff k∗ = E [k(Aσ∗ , Iτ∗)].

Since k∗ lies between k∗2 and k∗1 , all three values are the same.

By playing the optimal mixed strategy σ∗, Player I enforces the
expected payoff to be at most k∗1 = k∗.

Accordingly, Player II cannot stricly improve the payoff k∗

unilaterally by switching to a strategy different from τ∗.

By a similar argument, Player I cannot either stricly improve his
payoff unilaterally.
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Von Neumann’s Minimax Theorem

For any matrix game (A, I, k), it holds that

max
τ

min
σ

E [k(Aσ, Iτ )] = min
σ

max
τ

E [k(Aσ, Iτ )] (6)

The following reformulation of von Neumann’s Minimax Theorem
relies on the fact that the optimum strategy against a fixed mixed
strategy can always be chosen to be a pure strategy.

Variant of von Neumann’s Minimax Theorem

For any matrix game (A, I, k), it holds that

max
τ

min
A∈A

E [k(A, Iτ )] = min
σ

max
I∈I

E [k(Aσ, I )] .
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Proof that the variant is equivalent to the Minimax Theorem.

For arbitrary mixed strategies σ and τ it holds that

E [k(Aσ, Iτ )] =
∑

(A,I )∈(A,I)

Probσ[A] · Probτ [I ] · k(A, I )

=
∑
I∈I

Probτ [I ] ·E [k(Aσ, I ) ≤ max
I∈I

E [k(Aσ, I ) ,

hence for any given σ, maxτ E [k(Aσ, Iτ )] = maxI∈I E [k(Aσ, I )] ,
where ≥ is trivial and ≤ holds by the preceding discussion. Then

min
σ

max
τ

E [k(Aσ, Iτ )] = min
σ

max
I∈I

E [k(Aσ, I )] ,

i.e., the right-hand sides of the equations that asserted in the
Minimax Theorem and in its variant have the same value. A similar
argument for the left-hand sides then concludes the proof. ut
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The variant of von Neumann’s Minimax Theorem yields as
corollary the following reformulation of Yao’s Minimax Principle.

Theorem (Equivalent form of Yao’s Minimax Principle)

Let (A, I, k) be a matrix game and let Aσ0 and Iτ0 be mixed
strategies for the first and second player. Then it holds that

min
A∈A

E [k(A, Iτ0)] ≤ max
I∈I

E [k(Aσ0 , I )] .

Proof.

The variant of von Neumann’s Minimax Theorem yields

min
A∈A

E [k(A, Iτ0)] ≤ max
τ

min
A∈A

E [k(A, Iτ )]

= min
σ

max
I∈I

E [k(Aσ, I )] ≤ max
I∈I

E [k(Aσ0 , I )] .

ut
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Equilibrium points

By von Neumann’s Minimax theorem, any matrix game, that is,
any finite two-player zero-sum game with incomplete information
has at least one equilibrium point.

By a celebrated result of Nash, the existence of equilibrium points
remains valid in the more general case where the assumption that
the game is zero-sum has been dropped.

For zero-sum games, the expected payoffs of all equilibrium points
are the same, whereas this may be false in the more general case.

In the more general case, there may be two equilibrium points such
that with one of them the expected payoffs of both players are
strictly better of than with the other.
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Example Planes on collision course

Consider a situation where two planes are on a collision course
without being able to communicate which each other.

Assume further that each plane’s crew can decide on either
descending or climbing and that the planes do not collide if and
only if the two chosen actions are not the same.

Under certain additional simplifying assumptions, we can formalize
this situation as a finite two-person game with incomplete
information where the payoffs are given by

K =

(
(−100,−100) (0, 0)

(0, 0) (−100,−100)

)
.

The payoffs −100 and 0 are the costs in case the collision occurs
or not, respectively. Both players try to maximize their payoff.
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Example Planes on collision course

Recall the formalization of two planes on collision course by a
game with payoffs

K =

(
(−100,−100) (0, 0)

(0, 0) (−100,−100)

)
.

The pure strategies are climbing and descending.

A mixed strategy can be identified with its probability for climbing.

There are two equilibrium points (0, 1) and (1, 0), both with an
expected payoff of 0 for both players.

Furthermore, there is the equilibrium point (1/2, 1/2) with
expected payoff of −50 for each player.

Observe that in case one of the players decides on his pure strategy
by tossing a fair coin, no matter what the strategy of the other
player is, the expected payoff will always be −50.
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Randomized sorting

Matching lower and upper bounds for sorting

In what follows, we consider black-box Las Vegas algorithms for
sorting and obtain essentially matching lower and upper bounds of
about n log n on the expected number of comparisons in worst case
(where n is the number of items in the list to be sorted).

The upper bound is obtained by a probabilistic argument that
shows that randomized quicksort requires at most 1.4 n log n
comparisons.

The lower bounds is obtained by arguing that

any deterministic black-box algorithms requires roughly n log n
comparisons on average when the inputs are chosen uniformly
at random from the set of all inputs of size n,
where the lower bound for deterministic algorithms extends to
Las Vegas algorithms by Yao’s Minimax Principle.
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Randomized sorting

Algorithm RandQuicksort (Randomized Quicksort)

(Suppose that a strict linear ordering < is understood.)

Input: A list S = (sπ(1), . . . , sπ(n)) of n pairwise distinct items
((s1, . . . , sn) is the ordered list, π is a permutation).

Pick an item s of S uniformly at random.
Ssmall = (sπ(i))sπ(i)<s

Slarge = (sπ(i))sπ(i)>s

If |Ssmall| > 1, then Ssmall = RandQuicksort(Ssmall).
If |Slarge| > 1, then Slarge = RandQuicksort(Slarge).

Output: (Ssmall ◦ s ◦ Slarge) (◦ is concatenation).

In order to sort a list S , RandQuicksort is invoked with input S .
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Randomized sorting

Black-box sorting

Recall that we are considering black-box sorting, i.e., the only way
an algorithm may obtain information about an item in the input
list is to compare the item to another item.

Randomized and deterministic quicksort

Algorithm RandQuicksort differs from deterministic quicksort
precisely by the choice of the pivot elements that are used to
split the list that is currently processed.
For deterministic quicksort there are (rare) bad inputs on
which the algorithm always uses about n2 comparisons.
There are no particular bad inputs for randomized quicksort,
however, on any input, with small probability, randomized
quicksort may use about n2 comparisons.
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Proposition

When algorithm RandQuicksort is run on any list of n pairwise
distinct items, the expected number of comparisons required to
sort the list is at most 1.4 n log n.

Proof.

Let S = (s1, . . . , sn) be any ordered list of n pairwise distinct
items, and consider the application of RandQuicksort to any
permutation (sπ(1), . . . , sπ(n)) of S .

Any pair of items is compared at most once because

the recursive calls to RandQuicksort are always for lists of
items that have not yet been compared,
during such a call, any pair of items is compared at most once.

The number of comparisons is just the number of pairs (si , sj)
with i < j that are compared at all.
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Randomized sorting: an upper bound

Proof (continued).

For any pair i , j where 1 ≤ i < j ≤ n, consider the event that si is
ever compared to sj , and let pij be the probability of this event.

Furthermore, let Xij be the corresponding indicator variable,
(i.e., Xij = 1 if the event occurs and Xij = 0, otherwise).

The number of comparisons is just the sum over the Xij , where

E [Xij ] = pij · 1 + (1− pij) · 0 = pij .

Hence the expected number of comparisons is

E

 ∑
1≤i<j≤n

Xij

 =
∑

1≤i<j≤n
E [Xij ] =

∑
1≤i<j≤n

pij .

It remains to bound the sum of the probabilities pij .
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Randomized sorting: an upper bound

Proof (continued).

Fix any pair of indices i and j where i < j and consider
the j − i + 1 items si , . . . , sj .

During the recursive calls, these items always stick together until
for the first time one of these items is picked for splitting.

Each of these items has the same chance of being picked first.

In case the item from this list that is picked first

differs from si and sj , the two latter items are assigned to
different sublists and are never compared.
is equal to si or sj , the two items are compared.

In summary, the probability that si and sj are compared at all is

pij =
2

j − i + 1
.
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Randomized sorting: an upper bound

Proof (continued).

The expected number of comparisons then is equal to

∑
1≤i<j≤n

pij =
∑

1≤i<j≤n

2

j − i + 1
= 2

n−1∑
i=1

n∑
j=i+1

1

j − i + 1

= 2
n−1∑
i=1

n−i+1∑
k=2

1

k
≤ 2n

n∑
k=2

1

k
≤ 2n(Hn − 1),

where Hn = 1/1 + 1/2 + . . .+ 1/n is the nth Harmonic number.

Recall from the section on stable marriages that for all n ≥ 2,

Hn − 1 ≤ ln n = ln 2 · log n < 0.7 log n.

Hence the expected number of comparisons of RandQuicksort on
any fixed input of size n is strictly less than 1.4 n log n. ut
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Randomized sorting: a lower bound

The upper bound of 1.4n log n comparisons for randomized
Quicksort is essentially matched by the following lower bound.

Proposition

For any real number ε > 0 and for almost all n, when sorting lists
of n pairwise distinct items by any black-box Las Vegas algorithm,
in worst case the expected number of comparisons is at least

(1− ε)n log n .

Proof.

Fix any ε > 0 and n. By the discussion of black-box Las Vegas
algorithms for sorting preceding Yao’s Minimax Principle,

there is a finite set I of inputs of size n,
there is a finite set A of all correct deterministic black-box
algorithms for sorting inputs of size n.
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Randomized sorting: a lower bound

Proof (continued).

Furthermore, any black-box Las Vegas algorithm that correctly
sorts all inputs in I can be identified with a probability
distribution σ on A, where then we refer to the algorithm by Aσ.

If we let k(A, I ) be the number of comparisons that algorithm A
makes on input I , we have to show that for almost all n,

(1− ε)n log n ≤ max
I∈I

E [k(Aσ, I )] . (7)

By Yao’s Minimax Principle, we have for any probability
distribution σ on A and for the uniform distribution τ on I,

min
A∈A

E [k(A, Iτ )] ≤ max
I∈I

E [k(Aσ, I )] . (8)

So we are done by the next propostion, which shows that for
almost all n the left-hand side of (7) is a lower bound for the
left-hand side of (8). ut
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Randomized sorting: a lower bound

Proposition

For any real number ε > 0 and for almost all n, when sorting
inputs that are chosen uniformly at random from all permutations
of the set {1, . . . , n}, for any correct deterministic black-box
algorithm the average number of comparisons is at least

(1− ε)n log n .

Proof.

Fix any ε > 0 and any natural number n > 0, and let N = n!.

We identify the set I of input lists with n elements with the
set {S1, . . . ,SN} of all permutations of the set {1, . . . , n}.
Fix any deterministic black-box algorithm A that correctly sorts all
lists in I.
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Randomized sorting: a lower bound

Proof (continued).

Let the word wi be equal to the sequence of “answer bits” that
algorithm A receives on input Si when successively asking queries
of the form “x < y?”.

Then the average number of comparisons is (|w1|+ · · ·+ |wN |)/N
and it suffices to show that this value is at least (1− ε)n log n.

Claim 1 The set {w1, . . . ,wN} has size N and is prefix-free.

For a proof, first observe that there cannot be indices i 6= j such
that wi = wj . For such indices, the distinct inputs Si and Sj could
not be distinguished by A, hence at least one of these inputs would
not be sorted correctly.

Similarly, there cannot be indices i and j where wi is a proper prefix
of wj . For such indices, the distinct inputs Si and Sj cannot be
distinguished by A based on the first |wi | queries, whereas A asks
further queries on input Si but not on input Sj , a contradiction.
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Randomized sorting: a lower bound

Proof (continued).

We say a prefix-free set {w1, . . . ,wN} of size N has minimum
length sum if the sum |w1|+ · · ·+ |wN | is minimum among all
prefix-free sets of size N.

Claim 2 There is a prefix-free set of size N that has minimum
length sum such that the lengths of any two words in the set differ
at most by 1.

For a proof, it suffices to consider a prefix-free set {w1, . . . ,wN} of
size N that has minimum sum

∑N
i=1 2−|wi | among all prefix-free

sets of size N that have minimum length sum.

If this set contains words w and w ′ such that |w ′| − |w | ≥ 2, then
replacing w and w ′ by w0 and w1 yields as a contradiction another
prefix-free set of size N that has minimum length sum and where
the sum of the terms 2−|wi | has become strictly smaller due to

2−|w | + 2−|w
′| > 2−|w | = 2−|w0| + 2−|w1| .
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Randomized sorting: a lower bound

Proof (continued).

By Claim 2, choose a prefix-free set {w1, . . . ,wN} of size N that
has mimimum length sum and where in addition all the wi have
length t or t + 1 for some natural number t.

Accodingly, the minimum length sum is at least Nt and in order to
show the proposition, it suffices to show t ≥ (1− ε)n log n.

There are 2t and 2t+1 words of length t and t + 1, respectively,
and whenever the chosen prefix-free set contains a string w of
length t, it contains neither w0 nor w1, hence 2t+1 is an upper
bound for the size N of the set, i.e.,

t + 1 ≥ logN = log n! . (9)
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Proof (continued).

For any natural number k ≥ 1, among the n factors of n! there are
at most n/k that are less than or equal to n/k, hence we have

n! > (n/k)(n−n/k) = (n/k)(1−1/k)n . (10)

Putting together (3) and (4), we get for any k ≥ 1

t + 1 ≥ log n! > log(n/k)(1−1/k)n = (1− 1/k)n(log n − log k) .

Now pick k where 1/k < ε/2. Then it holds for all sufficiently
large n that

t > (1− 1/k) n (log n − log k)− 1

≥ (1− ε/2) n log n − 1 ≥ (1− ε)n log n . ut

In the proof above, in place of inequality (4) one could also work
with approximations of n! or log n! related to Stirling’s formula.
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Fingerprinting

Problem

Check the identity of two large files in a situation where comparing
them bit by bit is not feasible.

This problem arises for example when we want to check whether

(i) a large file has been transmitted correctly over a possibly
noisy channel,

(ii) the current and an older version of a file are the same.

Solution

Compare fingerprints of the files, not the whole file

Idea: the fingerprint is considerable smaller than the file itself,
while distinct files have distinct fingerprints with high probability.
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Fingerprinting

We assume that files are given as words over the alphabet {0, 1}.

Computing a fingerprint of a word

With k understood, map a given binary word w = w1 . . .wn first to

f (w) = 2n−1w1 + 2n−2w2 + . . .+ 2wn−1 + wn ,

and then let fk(w) = f (w) mod k be the fingerprint of w .

The fingerprint fk(w) requires approximately log k bits of storage,
where log k is chosen much smaller than n.

The fingerprints fk(u) and fk(v) are the same if and only if f (u)
and f (v) leave the same remainder modulo k , i.e., if

k divides |f (u)− f (v)| .

Using a fixed value of k might be good enough for detecting
random errors, but choosing k deterministically fails against
deliberate changes by a malign adversary.
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Lemma

For all sufficiently large t, there are at least t prime numbers less
than or equal to t log t.

Proof.

By the prime number theorem,

lim
m→∞

|{p ≤ m : p is prime }|
m/ lnm

= 1 ,

i.e., for large m, the number of primes below m is at least 4
5

m
lnm .

For all sufficiently large t and for m = t log t, the number of
primes below m is then at least

4

5

m

lnm
=

4

5 ln 2︸ ︷︷ ︸
>1

· log t

log t + log log t︸ ︷︷ ︸
→1

·t ≥ t . ut
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Fingerprinting

Algorithm Fingerprint

(Parameter: a natural number t)

Input: Two words u and v of length n.

Choose p uniformly at random among the prime numbers
below tn log tn.

If fp(u) = fp(v) then accept, else reject.

A uniformly distributed prime below tn log tn can be obtained by
picking random numbers in this range and running an efficient
primality test on them, where the probability of not finding a prime
can be made so small that this case can be neglected.

By the lemma above, there are tn primes in this range, hence the
probability of not hitting a prime when picking r numbers

is at most (1− 1
r )r ≤ 1/e < 1/2 for r = log tn,

and thus is at most 2−k for r = k log tn.
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Fingerprinting

Proposition

Let Algorithm Fingerprint be applied to words u and v of length n
where the parameter t is so large that the lemma above applies.
In case both words are identical, the algorithm accepts with
probability 1, in case the two words differ, the algorithm accepts
with probability at most 1/t.

Proof.

If u and v are identical, then fp(u) = fp(v) for all values of p,
hence the algorithm accepts with probability 1.

Next assume that u and v differ and let d = |f (u)− f (v)|.
The algorithm accepts if and only if p divides d .

We have 1 ≤ d ≤ 2n, hence d differs from 0 and has at most n
distinct prime factors.

By the lemma above, there are at least tn primes below tn log tn,
thus the probability that p divides d is at most n

tn = 1
t . ut
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Pattern matching

Pattern matching

Consider the problem of comparing a given word w = w1 . . .wn,
the pattern, to all the (consecutive) subwords of length n of a
sequence

a = a1a2 . . . am ,

the text, where the text is considerably longer than the pattern.

Formally, we are looking for the least index s such that the
subword asas+1 . . . as+n−1 of the text a is equal to the pattern w
(alternatively, we may look for all such indices s).

Instead of comparing the pattern directly to all relevant subwords,
we may compare the corresponding fingerprints.

The fingerprint of the pattern has to be computed only once.

The fingerprints of the possible subwords are computed
successively, where the fingerprint of every next subword can be
computed easily from the fingerprint of the preceding subword.
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Pattern matching

Computing successive fingerprints

Recall that the fingerprint of a word w of length n is

fp(w) = (2n−1w1 + 2n−2w2 + . . .+ 2wn−1 + wn) mod p ,

for some prime p chosen at random. Then for successive subwords

u = aiai+1 . . . ai+n−1 and u′ = ai+1ai+2 . . . ai+n

their fingerprints are given by

fp(u) = (2n−1ai + 2n−2ai+1 + · · ·+ 2ai+n−2 + ai+n−1) mod p,

fp(u′) = (2n−1ai+1 + 2n−2ai+2 + · · ·+ 2ai+n−1 + ai+n) mod p,

hence we have fp(u′) = 2(fp(u)− 2n−1ai ) + ai+n mod p.
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Pattern matching

Expected number of false matches

Consider any subword u of length n of the text.

If the pattern and the subword u are the same, then their
fingerprints are the same, too.

If the pattern and the subword u differ, then an analysis similar to
the one of algorithm Fingerprint applies.

In case the prime p is chosen among the first tn log tn primes, the
probability of matching fingerprints for any fixed subword that
differs from the pattern is at most 1/t.

By linearity of expectation, the expected frequency of such false
matches is at most 1/t with respect to the random choice of p.
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Pattern matching

Monte Carlo and Las Vegas version

In case the algorithm for pattern matching described above
immediately returns any index where the subword at the
corresponding position and the pattern have matching finger
prints, the algorithm has a certain probability for being incorrect,
i.e., we obtain a Monte Carlo algorithm.

In case the algorithm, when encountering matching fingerprints
assumes a match only after having verified the match by
comparing the subword and the pattern, the output is always
correct, i.e., we obtain a Las Vegas algorithm.

Note that there are deterministic algorithms for finding a pattern
in a text that run as fast but are based on other principles than the
randomized algorithms above.
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Pattern matching

Bad inputs

By linearity of expectation, for any pattern and any text, the
expected frequency of false matches is at most 1/t.

There are bad inputs of a pair of pattern and text where for certain
choices of p the frequency of false matches is larger than 1/t.

For example, consider pattern w = 0n and text a = 1m.
Then for p that divides the difference between f (0n) and f (1n),
every subword of the text will be a false match.

Consider a variant of the Las Vegas version of the algorithm where
a new prime p is picked at random every time a false match is
detected. Then large deviations from the expected number of false
matches

don’t occur any more with rather high probability on certain
bad inputs,
but may occur with small probability on all inputs.
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Self-correcting programs

Correctness

Existing methods for ensuring correctness of hard- or software are
not fully satisfactory.

Formal methods for checking the correctness exists but often are
considered to be too complicated or to complex for being applied.

The extensive runtime checks with test data that are done in
practice cannot guarantee to find all errors.

The Pentium division bug (1994)

The Pentium division bug resulted in incorrect computations for
certain rare inputs (according to some sources, division was
incorrect for a fraction of roughly 10−10 of all arguments).

The division bug indicates that even the most basic functions of
highly tested (and hopefully also verified) products may be
incorrect, and that in particular rare errors are hard to detect.
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Self-correcting programs

Self-checking and self-correcting programs

Testing can ensure that results are correct for most inputs.

Is there a general scheme for avoiding incorrect results at all in
case a high fraction of results is correct?

Idea: relate the results for given inputs to the results for

inputs that are “less complex” and hence can be assumed to
be correct,
inputs, that are randomly chosen and hence can be assumed
to be correct with high probability.

This idea can be used

for checking results (i.e., for detecting errors),
for correcting results.

We obtain programs that check or even correct themselves.
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Self-correcting programs

Algorithm MultiplicationCheck

(Parameter: a natural number t)

Input: three natural numbers a, b and c of size at most 2n.

Choose p uniformly at random among the
first tn log tn prime numbers.

Let d1 = c mod p.
Let d2 = ((a mod p)(b mod p)) mod p.
If d1 = d2 then accept, else reject.

Algorithm MultiplicationCheck accepts an input a, b, c

I with probability 1 in case ab = c ,
I with probability at most 1/t in case ab 6= c .

The analysis is similar to the one of Algorithm Fingerprint.
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Self-correcting programs

Algorithm MultiplicationCorrection

Input: two natural numbers a and b, each represented by n bits.

Determine n-bit natural numbers r1 and r2
by 2n independent tosses of a fair coin.

Let c = (a + r1)(b + r2)− r1(b + r2)− r2(a + r1) + r1r2 (∗)

Output: c (where the intended value of c is ab).

The right-hand side of equation (∗) evaluates to the required
value ab in case all arithmetical operations are correct.

Algorithm MultiplicationCorrection turns a multiplication
procedure that on certain rare inputs is always incorrect into a
multiplication procedure that on any input is correct with high
probability.
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Self-correcting programs

Proposition

Assume that Algorithm MultiplicationCorrection is run on a
processor where addition and subtraction are always correct, and

multiplication is incorrect for a fraction of at most ε of all
pairs of (n + 1)-bit numbers.

Then for any pair a and b of n-bit numbers, the probability that
the algorithm fails to compute the product of a and b correctly is
at most 16ε.

Proof.

It suffices to show that each of the four multiplications in (∗) is
incorrect with probability at most 4ε.

Observe that for all four multiplication both arguments
are (n + 1)-bit natural numbers (where n-bit numbers are identified
with appropriate (n + 1)-bit numbers).
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Self-correcting programs

Proof (continued).

We just consider the evaluation of the term r1(b + r2), and omit
the very similar consideration for the three remaining terms.

The numbers r1 and r2 are chosen uniformly and independently
from all n-bit numbers, and the mapping x 7→ b + x is injective.

Consequently, the pair (r1, (b + r2)) is chosen uniformly from a
set P of 22n pairs of (n + 1)-bit numbers.

By assumption, multiplication is not correct

for at most an ε-fraction of all pairs of (n + 1)-bit numbers,
that is, for at most ε22(n+1) = 4ε22n such pairs,
hence for at most an 4ε-fraction of all pairs in P. ut
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The Lovasz Local Lemma

Avoiding certain events simultaneously

Suppose that E1, . . . ,En are events that correspond to errors or
other outcomes that we want to avoid.

In what follows, we investigate conditions on the underlying
probability distribution that imply that the events Ei can be
avoided simultaneously, in the sense of implying nonzero
probability for the event

G =
⋂

i=1,...,n

Ei .
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The Lovasz Local Lemma

Sum of probabilities

If the sum Prob[E1] + ·+ Prob[En] is strictly less than 1, then the
event G has nonzero probability.

A necessary condition for G having nonzero probability is that
all Ei have probability strictly smaller than 1, where the latter
condition is in fact equivalent in case of mutual independence.

Independence

If the events E1, . . . ,En are mutually independent, then G has
nonzero probability if and only if Prob[Ei ] < 1 for all i .

For a proof, it suffices to observe that by independence we have

Prob[G ] = Prob

[
n⋂

i=1

Ei

]
=

n∏
i=1

Prob[Ei ] =
n∏

i=1

(1− Prob[Ei ]) .
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The Lovasz Local Lemma

So E1, . . . ,En can be simultaneously avoided with nonzero
probability

in general, if each event has probability strictly less than 1/n,
in case the events are mutually independent, if each event has
probability strictly less than 1 .

In case each event depends on at most d other events (in a sense
to be explained in a minute), by the Lovasz Local Lemma it suffices
to require that each event has probability of at most O(1/d).

Definition

Let X1, . . . ,Xn be random variables with ranges A1, . . . ,An,
respectively. The random variable Xi is mutually independent of
the random variables Xi1 , . . . ,Xit if for all ai ∈ Ai and all aij ∈ Aij

Prob[Xi = ai |Xi1 = ai1& · · ·&Xit = ait ] = Prob[Xi = ai ] .

In this situation, we say that the random variable Xi depends
among X1, . . . ,Xn only on the set of all random variables Xj

where j is in the set D = {1, . . . , n} \ {i , i1, . . . , it}.
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The Lovasz Local Lemma

The notation above is extended to events in the natural way.

Definition

Let E1, . . . ,En be events. The event Ei is mutually independent of
the events Ei1 , . . . ,Eit , if for all events Li1 , . . . , Lit such that
each Lj is equal either to Ej or to Ej it holds that

Prob[Ei |Li1& · · ·&Lit ] = Prob[Ei ] .

In this situation, we say that the event Ei depends among the
events E1, . . . ,En only on the set of all events Ej where j is in the
set D = {1, . . . , n} \ {i , i1, . . . , it}.

This way Ei is mutually independent of the events Ei1 , . . . ,Eit and,
accordingly, Ei depends only on the events Ej with j in the set D
as above, if corresponding statemens are true for the indicator
variables of the events Ei ,Ei1 , . . . ,Eit .
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The Lovasz Local Lemma

Events E1, . . . ,En are mutually independent if and only if each Ei

is mutually independent of the set of all other events.

The following example indicates that the notion of an event
depending only on certain other events lacks certain properties
suggested by its naming.

Example: depending only on certain variables

Suppose a fair coin is tossed 3 times and let Xi be the indicator
variable for the event that toss i shows head. Furthermore, let

X4 = X1 ⊕ X2, X5 = X1 ⊕ X3, X6 = X2 ⊕ X3 .

Then the random variable X1 is mutually independent of the
random variables X4,X5,X6, as well as of the random
variables X2,X3,X6. Accordingly, X1 depends only on the
set {X2,X3}, but also depends only on the set {X4,X5}. , X1

depends on X2 and X4 in the strong sense that X1 = X2 ⊕ X4.
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The Lovasz Local Lemma

Theorem (Lovasz Local Lemma)

Let E1, . . . ,En be events and let D1, . . . ,Dn be subsets
of {1, . . . , n} such that for i = 1, . . . , n, the event Ei depends
among E1, . . . ,En only on the set of all events Ej where j ∈ Di .
Furthermore, assume that there are real numbers x1, . . . , xn in the
interval [0, 1] where

Prob[Ei ] ≤ xi
∏
j∈Di

(1− xj) .

Then it holds for the event G =
⋂

i=1,...,n Ei that

Prob[G ] ≥
∏

i=1,...,n

(1− xi ) .

For a proof of the lemma see the appendix to this chapter.
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The Lovasz Local Lemma

Corollary (Basic form of the Lovasz Local Lemma)

Let E1, . . . ,En be events where Prob[Ei ] ≤ p for some real p < 1.
Furthermore, assume that there is a constant d such that, first, for
Euler’s number e = 2.71 . . . it holds that

e(d + 1)p ≤ 1

and, second, there are sets D1, . . . ,Dn of size at most d such that
for i = 1, . . . , n, the event Ei depends among E1, . . . ,En only on
the set of all events Ej where j ∈ Di .

Then it holds for the event G =
⋂

i=1,...,n Ei that

Prob[G ] > 0 .
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The Lovasz Local Lemma

Proof of the corollary from the local lemma.

For d = 0, the events Ei are mutually independent, hence the
conclusion of the corollary is immediate by Prob[Ei ] < 1.

So assume d > 0 and let xi = 1/(d + 1).
Then the assumption of the Local Lemma is satisfied because it
holds for i = 1, . . . , n that

xi
∏
j∈Di

(1−xj) ≥
1

d + 1

(
1− 1

d + 1

)d

≥ 1

d + 1
·1
e
≥ p ≥ Prob[Ei ] ,

where the second inequality holds because (1− 1
d )d converges

nonincreasingly to 1/e. The Local Lemma then yields

Prob[G ] ≥
∏

i=1,...,n

(1− xi ) =

(
1− 1

d + 1

)n

> 0.

ut
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The Lovasz Local Lemma

The proof of the following proposition provides an example for an
application of the Lovasz Local Lemma.

Recall that a Boolean formula ϕ is in k conjunctive normal form
(k-CNF) if ϕ is a conjunction of (disjunctive) clauses where each
clause contains exactly k literals with mutually distinct variables.

Note that there are more liberal definitions of k-CNF where, for
example, it is just required that each clause contains at most k
literals.

Proposition

Let ϕ be a Boolean formula in k-CNF such that every variable
occurs in at most 2k−log k−2 clauses of ϕ. Then ϕ is satisfiable.
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The Lovasz Local Lemma

Proof.

Consider the random experiment where the variables in ϕ are
assigned truth values by independent tosses of a fair coin.

Let Ei be the event that the ith clause of ϕ is not satisfied.

By construction, we have p = Prob[Ei ] = 1/2k .

Each Ei is mutually independent of the set of all Ej such that
the ith and the jth clause of ϕ do not have a variable in common.

Thus by assumption on ϕ, any event Ei depends among the
events Ej only on a set of at most d = k2k−log k−2 − k events,
where

e(d + 1)p ≤ ek2k−log k−22−k < 1 .

Hence the basic form of the Lovasz Local Lemma applies and ϕ
will be satisfied with nonzero probability. ut
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Appendix: Proof of the Lovasz Local Lemma

We demonstrate the Lovasz Local Lemma stated above.

Theorem (Lovasz Local Lemma)

Let E1, . . . ,En be events and let D1, . . . ,Dn be subsets
of {1, . . . , n} such that for i = 1, . . . , n, the event Ei depends
among E1, . . . ,En only on the set of all events Ej where j ∈ Di .
Furthermore, assume that there are real numbers x1, . . . , xn in the
interval [0, 1] where

Prob[Ei ] ≤ xi
∏
j∈Di

(1− xj) .

Then it holds for the event G =
⋂

i=1,...,n Ei that

Prob[G ] ≥
∏

i=1,...,n

(1− xi ) .
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Appendix: Proof of the Lovasz Local Lemma

Proof: We have to show

Prob[G ] ≥
∏

i=1,...,n

(1− xi ) .

By definition of G and the chain rule formula we obtain

Prob[G ] = Prob
[
∩i=1,...,nEi

]
= Prob[E1] · Prob[E2|E1] · Prob[E3|E1 ∩ E2]

· Prob[E4|E1 ∩ E2 ∩ E3] · · · · · Prob[En|E1 ∩ · · · ∩ En−1] ,

where in turn we have for i = 1, . . . , n

Prob[Ei |E1 ∩ · · · ∩ Ei−1] = 1− Prob[Ei |E1 ∩ · · · ∩ Ei−1] .

So it suffices to show Prob[Ei |E1 ∩ · · · ∩Ei−1] ≤ xi for i = 1, . . . , n.
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued): In order to show Prob[Ei |E1 ∩ · · · ∩ Ei−1] ≤ xi ,
we demonstrate

Prob[Ei |
⋂
j∈S

Ej ] ≤ xi ,

for all S ⊆ {1, . . . , n} by induction over the size of S and
simultaneously for all i .

Base case |S | = 0: By assumption of the Local Lemma it holds
for i = 1, . . . , n that

Prob[Ei |
⋂
j∈S

Ej ] = Prob[Ei ] ≤ xi
∏
j∈Di

(1− xj) ≤ xi .
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued): Induction step |S | = k to |S | = k + 1:

Fix i in {1, . . . , n} and partition S into the sets

Sdep = S ∩ Di and Sind = S \ Di .

Case I: Sdep = ∅. By definition of Di and choice of Sind we have

Prob[Ei |
⋂
j∈S

Ej ] = Prob[Ei |
⋂

j∈Sind

Ej ] = Prob[Ei ] ≤ xi .
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued):

Case II: Sdep 6= ∅. By definition of conditional probability we have

Prob[Ei |
⋂
j∈S

Ej ] =
Prob[Ei ∩

⋂
j∈S Ej ]

Prob[
⋂

j∈S Ej ]

=

(∗)︷ ︸︸ ︷
Prob[Ei ∩

⋂
j∈Sdep

Ej |
⋂

j∈Sind

Ej ] ·Prob[
⋂

j∈Sind Ej ]

Prob[
⋂

j∈Sdep

Ej |
⋂

j∈Sind

Ej ]]︸ ︷︷ ︸
(∗∗)

·Prob[
⋂

j∈Sind Ej ]

≤
xi
∏

j∈Di
(1− xj)∏

j∈Sdep(1− xj)
≤ xi

∏
j∈Di\Sdep

(1− xj) ≤ xi .
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued):

Case II: Sdep 6= ∅. By definition of conditional probability we have

Prob[Ei |
⋂
j∈S

Ej ] =
Prob[Ei ∩

⋂
j∈S Ej ]

Prob[
⋂

j∈S Ej ]

=

=(∗)︷ ︸︸ ︷
Prob[Ei ∩

⋂
j∈Sdep

Ej |
⋂

j∈Sind

Ej ] ·Prob[
⋂

j∈Sind Ej ]

Prob[
⋂

j∈Sdep

Ej |
⋂

j∈Sind

Ej ]]︸ ︷︷ ︸
=(∗∗)

·Prob[
⋂

j∈Sind Ej ]

≤
xi
∏

j∈Di
(1− xj)∏

j∈Sdep(1− xj)
≤ xi

∏
j∈Di\Sdep

(1− xj) ≤ xi .
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued): The value of (∗) can bounded as follows

(∗) = Prob[Ei ∩
⋂

j∈Sdep

Ej |
⋂

j∈Sind

Ej ]

≤ Prob[Ei |
⋂

j∈Sind

Ej ] = Prob[Ei ] ≤ xi
∏
j∈Di

(1− xj) .

In the second line, the three relations hold from left to right
because first, the compared probabilities are with respect to two
events where one is a subset of the other, second, Sind is a subset
of Di , and, third, by assumption of the Local Lemma.
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Appendix: Proof of the Lovasz Local Lemma

Proof (continued): In order to bound (∗∗), recall that by case
assumption we have |Sdep| = r > 0, say, Sdep = {j1, . . . , jr}.
By a variant of the chain rule formula we obtain for F =

⋂
j∈Sind Ej

(∗∗) = Prob[
⋂

j∈Sdep

Ej |F ]

= Prob[Ej1 |F ] · Prob[Ej1 ∩ Ej2 |F ∩ Ej1 ]

· · · · · Prob[Ejr |F ∩ Ej1 ∩ · · · ∩ Ejr−1 ]

=
∏

t=1,...,r

Prob[Ejt |F ∩ Ej1 ∩ · · · ∩ Ejt−1︸ ︷︷ ︸
at most |S | − 1 sets Ej

]

≥
∏

t=1,...,r

(1− xjt ) =
∏

j∈Sdep

(1− xj) ,

where the inequality is immediate by the induction hypothesis. ut
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Karger’s Min-Cut algorithm

Recall from the section on derandomization that

a cut of a graph G = (V ,E ) is a partition of V into two
disjoint subsets V0 and V1,
the weight of a cut (V0,V1) is the number of edges
between V0 and V1.

Definition (Min-cut problem)

A cut (V0,V1) is nontrivial in case V0 and V1 are both nonempty.

A mininum cut of a given graph G is a nontrivial cut of G that has
minimum weight among all nontrivial cuts of G .

The min-cut problem asks to find a minimum cut of a given graph.

The size of a minimum cut of a graph G is the minimum number
of edges that must be removed from G in order to render G
disconnected.

Minimum cuts can be computed in deterministic polynomial time
via computing corresponding maximum flows.
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Karger’s Min-Cut algorithm

In what follows, we will discuss a randomized algorithm for solving
the min-cut problem that has been proposed by Karger.

It is suggesting to describe the algorithm and its verification in
terms of multigraphs and cuts of multigraphs.

Definition (Multigraph)

A multigraph is a pair G = (V ,E ) where V is a finite set
and E : V × V → N is a mapping such that for all u, v ∈ G we
have

E (u, v) = E (v , u) and E (u, u) = 0

(i.e., our multigraphs are undirected and do not have loops).

For a multigraph G = (V ,E ), the members of V are called nodes,
and all sets of the form {u, v} for two distinct nodes u and v are
called edges. The multiplicity of an edge {u, v} is E (u, v).
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The Contract algorithm

A graph can be identified with a multigraph where all multiplicities
are either 0 or 1; however note that

for a graph G = (V ,E ) only the pairs {u, v} contained in E
are called edges,
in a multigraph G = (V ,E ) any pair {u, v} of two distinct
nodes is called an edge of G , even in case the multiplicity
of {u, v} is 0.

Furthermore, there are contexts where an edge {u, v} of a
multigraph of multiplicity t is viewed as a set of t different copies
of an edge between u and v (of multiplicity 1).

Similar to the latter view, for a multigraph G = (V ,E ) the number
of edges counted with multiplicities is

m(E ) =
1

2

∑
(u,v)∈V×V

E (u, v) =
∑

{(u,v)∈V×V : u<v}

E (u, v),

where for the last sum term we assume some strict order < on V .
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The Contract algorithm

The notions of cut and trivial cut of a graph extend by literally the
same definition to multigraphs.

Definition (Minimum cuts of multigraphs)

Let G = (V ,E ) be a multigraph. The weight of a cut (V0,V1)
of G is

w(V0,V1) =
∑

u∈V0,v∈V1

E (u, v).

A cut (V0,V1) of G is minimum if the cut is nontrivial and has
minimum weight among all nontrivial cuts of G .
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The Contract algorithm

Definition (Contracting of an edge)

Let G = (V ,E ) be a multigraph and let u and v be any pair of
two distinct nodes of G .

The multigraph obtained from G by contracting the edge {u, v}
towards u is (V \ {v},E ′) where for all x , y in V \ {u, v} we have

E ′(x , y) = E (x , y)

E ′(u, x) = E ′(x , u) = E (u, x) + E (v , x).

Contracting an edge {u, v} towards the node u is also referred to
as contracting or collapsing nodes u and v into u.

Edges with arbitrary multiplicity including 0 can be contracted.

The multigraph resulting from contracting an edge does not
depend on the multiplicity of the contracted edge.



12 Karger’s Min-Cut algorithm 221

The Contract algorithm

Algorithm Contract

Input: A graph G = (V ,E ) (Assume that V = {1, . . . , n}).

(G = (V ,E ) is considered as a multigraph.)

Initialization: let n = |V |, Vn = V , En = E and Gn = (Vn,En).

For i = n, . . . , 3

Choose edge {u, v} ∈ Ei uniformly at random while taking into
account the multiplicities of the edges
(i.e., edge {u, v} is chosen with probability Ei (u,v)

m(Ei )
).

Let Gi−1 = (Vi−1,Ei−1) be the multigraph obtained from Gi by
contracting the edge u and v into the node min{u, v}.

Output: The cut (U0,U1) where U0 and U1 are the sets of nodes
that have been contracted into the two nodes of V2, respectively.

Recall that m(E ) is the sum of the multiplicities as given by E
over all edges in a multigraph (V ,E ).
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Verification of the Contract algorithm

Theorem

If algorithm Contract is run on a graph with n nodes, each
minimum cut of the graph is output with probability at least 2

n2 .

Proof.

Let G be any graph with n nodes and fix some minimum cut of G
of weight k , which we refer to as the desigated cut.

For i = n, . . . , 2, the algorithm constructs graphs Gi = (Vi ,Ei ).

Fix some i and for any set U of nodes of Gi , let expand(U) be the
set of nodes of V that have been contracted into a node of U.

If (U0,U1) is a cut of Gi , then (expand(U0), expand(U1)) is a cut
of G of the same weight, hence (U0,U1) has weight at least k .

For every node v in Gi the weight of the cut ({v},Vi \ {v}) is
equal to the degree of v , which is thus at least k . So we obtain

|Ei | ≥ k|Vi |
2 = ki

2 .
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Verification of the Contract algorithm

Proof (continued).

Call Gi good in case during the construction of Gn, . . . ,Gi no edge
crossing the designated cut has been contracted.

By definition, Gi is good if and only if the edges of the designated
cut correspond to a minimum cut of Gi of weight k .

The algorithm outputs the designated cut if and only if G2 is good.

Assuming that Gi is good, Gi−1 is good with probability of at least

1− k

|Ei |
≥ 1− 2k

ki
= 1− 2

i
=

i − 2

i
, because of |Ei | ≥

ki

2
.

Recall that the algorithm outputs the designated cut in case G2 is
good, which is true with probability of at least

3∏
i=n

(
i − 2

i

)
=

n − 2

n
· n − 3

n − 1
· · · · · 3

5
· 2

4
· 1

3
=

2

n(n − 1)
>

2

n2
.
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Verification of the Contract algorithm

Proof (continued).

More precisely, the lower bound 2
n2 holds because of

Prob[G2 is good]

= Prob[G2 is good & · · · & Gn is good]

=
3∏

i=n

Prob[Gi−1 is good|Gi is good & · · · & Gn is good]

=
3∏

i=n

Prob[Gi−1 is good|Gi is good] =
3∏

i=n

(
i − 2

i

)
.

The graph Gi is good if and only if Gi ,Gi+1, . . . ,Gn are all good,
hence the first and third equation follow.

The second equation holds by the chain rule formula and
because Gn is always good.

The last equation holds by the discussion on the previous slide. ut
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Verification of the Contract algorithm

Corollary

Assume algorithm Contract is run indepedently for tn2 many times
on a graph with n nodes. Then the probability that the minimum
cut of the graph is not found is at most 1

22t .

Proof.

By Theorem 54, the probability that the minimum cut is not found
is at most(

1− 2

n2

)tn2

=

(
1− 2

n2

) n2

2
·2t
≤
(

1

e

)2t

<
1

22t
.

ut
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Learning probably approximately correct

Learning probably approximately correct

We want to learn an unknown subset of a base set E .

The subset to be learned is called the target concept KT .

The target concept is chosen from a concept class K of subsets
of E , i.e., K is a subset of the power set 2E of E .

The data consists of pairs (x1,KT (x1)), . . . , (xs ,KT (xs)) where

the examples xj are chosen randomly and independently
from E according to a probability distribution µ on E ,
the bit KT (xj) tells whether xj is a member of the target
concept, where a one indicates membership.

In general, a learner for a concept class K maps the given data to
a candidate concept in K.

The goal of the learners considered here is to come up with a
candidate concept K in K that does not differ too much from the
target concept KT .
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Learning probably approximately correct

Learning probably approximately correct

The discrepancy between the candidate and the target concept is
measured with respect to the probability distribution µ on E , more
precisely, it is required for some given ε > 0 that

µ(KT4KA) ≤ ε . (11)

The learner must succeed in reaching precision ε as stated in (11)
with probability at least 1− δ for some given error bound δ > 0.

For the case of a deterministic learner considered here, the success
probability refers to the choice of the sample x1, . . . , xs .

It is natural to measure the discrepancy with respect to µ because
it is hard to distinguish two concepts that differ only in a part of E
that is less likely and hence is unlikely to be represented in the
sample x1, . . . , xs .
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PAC learning

Definition PAC learner

Let E be any set and let K be a subset of the power set 2E of E .
The learner A learns the concept class K probably approximately
correct (PAC learns K, for short) with sample complexity s if

for every probability distribution µ on E ,
for all ε, δ > 0 and for s = s(ε, δ),
for all KT ∈ K,

in case x1, . . . , xs are randomly chosen from E such that the xj are
mutually independent and distributed according to µ, then A yields
on the data

(x1,KT (x1)), . . . , (xs ,KT (xs))

a concept KA in K such that

Prob[µ(KT4KA) ≤ ε] ≥ 1− δ.
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PAC learning

Variants of PAC learners

In what follows, we only consider the probability-theoretical and
combinatorial aspects of PAC learning.

In particular, we do neither require that learners are effective or are
even efficient, nor that the sample complexity s = s(ε, δ) obeys
certain bounds in ε and δ.

There are more restricted notions of PAC learning where for
example it is required in addition that

the function from data to candidate concept provided by the
learner is computable in polynomial time,
the sample complexity is polynomial in the reciprocals of ε
and δ, i.e., s = p(1/ε, 1/δ) for some polynomial p.
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PAC learning of rectangles

Example Learning axis-parallel rectangles

We consider PAC learning of axis-parallel rectangles.

Let E = R2 be the Euclidean plane and for

R(a, b, c , d) = {(x , y) ∈ R2 : a ≤ x ≤ b and c ≤ y ≤ d}

let
K = {R(a, b, c, d) : a, b, c , d ∈ R}

be the concept class of all axis-parallel rectangles (including some
degenerated ones like lines or the empty set).
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PAC learning of rectangles

A PAC learner for rectangles

Let A be the learner that on data ((x1, y1), b1), . . . , ((xs , ys), bs) for

X = {xi : bi = 1} and Y = {yi : bi = 1}

yields as a candidate concept the rectangle

RA = R(minX ,maxX ,minY ,maxY )

in case X (and then also Y ) is nonempty and, otherwise, yields the
empty set.

Note that the candidate concept RA provided by A is

simply the least rectangle that contains all positive examples
in the sample,
is always a subset ot the target concept, and
is consistent with the given data in the sense that for all i we
have bi = RA(xi ) (consistent learners will be discussed below).
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PAC learning of rectangles

We will argue next that A becomes a PAC learner for K when the
sample complexity s = s(ε, δ) is chosen appropriately.

What is the required sample complexity?

Fix any probability distribution µ on E , real numbers ε, δ > 0 and
target concept RT = R(a, b, c, d).

Case I: µ(RT ) ≤ ε
Since RA ⊆ RT , we have RT4RA = RT \ RA ⊆ RT , hence

µ(RT4RA) ≤ µ(RT ) ≤ ε .

Case II: µ(RT ) > ε

We define a new rectangle R0 ⊆ RT by removing strips of measure
about ε/4 on all four sides of RT .
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PAC learning of rectangles

What is the required sample complexity? (continued)

In order to define the marginal strips R1(right), R2(left), R3(top),
and R4(bottom), let

z1 = sup{z : µ(R(z , b, c , d) ≥ ε/4},
z2 = inf{z : µ(R(a, z , c , d) ≥ ε/4},
z3 = sup{z : µ(R(a, b, z , d) ≥ ε/4},
z4 = inf{z : µ(R(a, b, c , z) ≥ ε/4},

R1 = R(z1, b, c , d), R−1 = R1 \ {(x , y) : x = z1},
R2 = R(a, z2, c, d), R−2 = R2 \ {(x , y) : x = z2},
R3 = R(a, b, z3, d), R−3 = R3 \ {(x , y) : y = z3},
R4 = R(a, b, c , z4), R−4 = R4 \ {(x , y) : y = z4}.
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PAC learning of rectangles

What is the required sample complexity? (continued)

By construction, we then have for i = 1, . . . , 4,

(i) Ri ⊆ RT ,
(ii) µ(Ri ) ≥ ε/4,
(iii) µ(R−i ) ≤ ε/4.

Now let R0 = R(z1, z2, z3, z4) = RT \ (R−1 ∪ R−2 ∪ R−3 ∪ R−4 ).

If case the sample contains at least one point in R1 through R4,
then

R0 ⊆ RA ⊆ RT

and hence

RT4RA = RT \ RA ⊆ R−1 ∪ R−2 ∪ R−3 ∪ R−4 ,

and by (iii) we obtain µ(RT4RA) ≤ ε.
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PAC learning of rectangles

What is the required sample complexity? (continued)

For i = 1, . . . , 4, by (ii), the rectangle Ri has probability of at
least ε/4, hence the probability that among s examples none is
in Ri is at most (1− ε/4)s . So it suffices to choose s where

4(1− ε/4)s ≤ δ ⇔ 2 + s log(1− ε/4) ≤ log δ

⇔ s ≥ −2 + log δ

log(1− ε/4)
=

2 + log 1/δ

− log(1− ε/4)
.

Inspection of the growth of the binary logarithm function on
arguments close to 1 reveals that x < − log(1− x) holds for x > 0.

Applying this inequality to x = ε/4 shows that A becomes a PAC
learner in case

s ≥ 2 + log 1/δ

ε/4
.



13 Learning probably approximately correct 232

PAC learning of finite concept classes

Definition Consistent learner

Let E be a set and let K ⊆ E be a concept. Then K is consistent
with data (x1, b1), . . . , (xs , bs) if K (xj) = bj for j = 1, . . . , s.

A learner for a concept class K is consistent if for any target
concept KT in K and any data of the form

(x1,KT (x1)), . . . , (xn,KT (xn))

the learner yields a candidate concept that is consistent with the
given data.

A learner must output a candidate concept in the concept class K
to be learned, thus a learner can never be consistent with data that
is not consistent with any concept in K.

PAC learners need not to be consistent because candidate and
target concept are just required to be close but not to be the same.
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PAC learning of finite concept classes

Theorem

Let E be a set and let K ⊆ 2E be a finite concept class over E .
Then every consistent learner for K is a PAC learner for K with
sample complexity

s = s(ε, δ) =
log |K|+ log 1/δ

ε

Proof.

Fix any probability measure µ on E and reals ε, δ > 0.

By definition of PAC learning, it suffices to show that for any given
target concept KT , our learner outputs a candidate concept K
in K such that µ(KT4K ) ≥ ε with probability of at most δ .

So it suffices to show that every individual such K is output with
probability of at most δ/|K|, where by assumption on the learner a
concept can only be output if it is consistent with the data.
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PAC learning of finite concept classes

Proof. (continued)

It suffices to show that for s = s(ε, δ) as in the theorem and any
target concept KT , for any concept K in K such that

µ(KT4K ) ≥ ε (12)

the probability that a sample of size at least s will lead to data
consistent with K is at most δ/|K|.
In general, a concept K is consistent with data for a target
concept KT if and only if none of the sample points is in KT4K .

So any K that satisfies (2) will be consistent with a sample of
size s with probability of at most (1− ε)s , hence it suffices to show

(1− ε)s ≤ δ/|K| .

But for s as in the proposition, this follows by essentially the same
argument as in the example on learning rectangles, where the
factor 2 and the term ε/4 are replaced by |K| and ε, respectively.
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PAC learning and VC dimension

Definition VC dimension

Let E be a set, let K ⊆ 2E be a finite concept class over E , and
let X ⊆ E be finite. Then X is shattered by the concept class K if

{K ∩ X : K ∈ K} = 2X ,

i.e., if any subset of X can be obtained by intersecting X with a
concept K in K.

The Vapnik-Chernovenkis dimension or VC dimension, for short, of
the concept class K is

VC(K) = max{|X | : X ⊆ E is finite and is shattered by K} .

Examples

For finite E and K = 2E , we have VC(K) = |E |.
For E = R and K the set of finite intervals, we have VC(K) = 2.
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PAC learning and VC dimension

Example Axis-parallel rectangles

Let E be the Euclidean plane, i.e., E = R2, and let K be equal to
the set of axis-parallel rectangles.

The set {(0, 1), (1, 0), (−1, 0), (0,−1)} has size four and is
shattered by K, hence VC(K) ≥ 4.

On the other hand, we have VC(K) < 5.

For a proof, fix any five points (x1, y1), . . . , and (x5, y5) and let

xmin = min{x1, . . . , x5}, xmax = max{x1, . . . , x5},
ymin = min{y1, . . . , y5}, ymax = max{y1, . . . , y5}.

Now choose four points in this set such that xmin and xmax occur
among the x-coordinates of these four points, and similarly, ymin

and ymax occur among the y-coordinates.
Then any axis-parallel rectangle that contains these four points
must also contain the remaining fifth point.
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PAC learning and VC dimension

The result that every consistent learner of a finite concept class is
already a PAC learner for this concept class can be extended to
concept classes that have finite VC dimension.

Theorem

Let E be a set and let K ⊆ 2E be a finite concept class over E
with finite Vapnik-Chernovenkis dimension VC(K) = d .
Then every consistent learner for K is a PAC learner for K with
sample complexity

s = s(ε, δ) = O

(
d log 1/min{ε, δ}

ε

)
,

where the constant hidden in the O-notation does depend neither
on K nor on ε or δ.

See Rivest, Lecture Notes on Machine Learning, 1994, or Blumer,
Ehrenfeucht, Haussler, and Warmuth, Learnability and the
Vapnik-Chervonenkis-dimension, JACM 36(4):929–965, 1989.
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The Markov inequality

The next two theorems extend by essentially the same proofs to
not necessarily discrete random variables.

Theorem Markov inequality

Let X be a discrete random variable that attains only nonnegative
values and such that E [X ] exists. Then for all positive r ∈ R,

Prob[X ≥ r ] ≤ E [X ]

r
.

Equivalently, if in addition E [X ] > 0, then for all positive r ∈ R,

Prob[X ≥ r E [X ]] ≤ 1

r
.

Proof.

Let Xr be the indicator variable for the event that X is at least r ,
i.e., Xr = 0 in case X < r and, otherwise, Xr = 1. So Xr ≤ X/r ,
and hence

Prob[X ≥ r ] = E [Xr ] ≤ E [X/r ] =
E [X ]

r
.



14 Tail bounds 239

The Chebyshev inequality

Definition Variance

Let X be a discrete random variable such that E [X ] exists.
The variance Var [X ] of X is defined as

Var [X ] = E [(X −E [X ])2] .

Remark

The square root of the variance of a random variable X is a very
rough measure how much the values of X will deviate from E [X ],
though only rarely

√
Var [X ] will indeed be equal to the expected

deviation.

Equivalently, the variance of a random variable X is a rough
measure for how much X is concentrated around E [X ], where a
small variance means highly concentrated.
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The Chebyshev inequality

Theorem Chebyshev inequality

Let X be a random variable where E [X ] and Var [X ] both exist.
Then it holds for all positive r ∈ R,

Prob[|X −E [X ]| ≥ r ] ≤ Var [X ]

r2
.

Equivalently, in case in addition Var [X ] > 0, for all positive r ∈ R,

Prob
[
|X −E [X ]| ≥ r

√
Var [X ]

]
≤ 1

r2
.

Proof.

It suffices to observe that

Prob
[
|X −E [X ]| ≥ r

√
Var [X ]

]
= Prob

[
|X −E [X ]|2 ≥ r2Var [X ]

]
,

and to apply the Markov inequality to the random variable
|X −E [X ]|2, which is nonnegative and has expectation Var [X ].
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The Chernov-Hoeffding bound

Theorem Chernov-Hoeffding bound

Let X1, . . .Xn be mutually independent {0, 1}-valued random
variables where Prob[Xi = 1] = pi for 0 < pi < 1.

Furthermore, let X = X1 + · · ·+ Xn and µ = E [X ] =
∑

pi .

a) For all δ where 0 < δ ≤ 1 it holds that

Prob[X ≤ (1− δ)µ] < e−
δ
2
µ .

b) For all δ > 0 it holds that

Prob[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
.

(Here e = 2.71 . . . is Euler’s number.)
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The Chernov-Hoeffding bound

Majority vote

Suppose for some p > 1/2 and for any input, a randomized
algorithm decides with probability at least p correctly whether any
given input has a certain property or not.

Applying a majority vote to independent iterations of the
algorithms means that the algorithm is run several times on the
same input using mutually independent random sources, and the
output is equal to the majority of the outcomes of the iterations

Corollary Probability amplification

Let X1, . . .Xn be mutually independent {0, 1}-valued random
variables where Prob[Xi = 1] = 1/2 + ε for some real ε > 0.

Then for X = X1 + · · ·+ Xn, we have

Prob
[
X ≤ n

2

]
< 2−

ε
2
n .



14 Tail bounds 243

The Chernov-Hoeffding bound

Proof.

Let µ = E [X ] = (1/2 + ε)n. For any δ where 0 < δ < 1 and

n

2
≤ (1− δ)µ = (1− δ)(1/2 + ε)n , (13)

by the Chernov-Hoeffding bound we have

Prob[X ≤ n

2
] ≤ Prob[X ≤ (1− δ)µ] < e−

δ
2
µ

Elementary rearrangements show that (13) becomes true for

δ =
2ε

1 + 2ε
,

and plugging this value of δ into the bounds derived above yields

Prob[X ≤ n

2
] ≤ e−

δ
2
µ = e−

ε
1+2ε

( 1
2

+ε)n = e−
ε
2
n < 2−

ε
2
n . ut
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Appendix: Proof of the Chernov-Hoeffding bound

In the proof, we will use the standard properties of the exponential
function y 7→ ey , where e = 2.71 . . . is Euler’s number.

In particular, the exponential function is strictly increasing and is
equal to its own derivative. Furthermore, we have

1 + y < ey for any real number y 6= 0 , (14)

Inequality (14) simply holds true because its two sides are the
same at y = 0, and the right-hand side grows strictly more slowly
than the left-hand side on the negative reals, but grows strictly
faster on the positive reals.

Proof.

Let X1, . . .Xn be mutually independent {0, 1}-valued random
variables where Prob[Xi = 1] = pi for 0 < pi < 1.

Let X = X1 + · · ·+ Xn and µ = E [X ] =
∑

pi .
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Proof of part a: For given δ where 0 < δ ≤ 1, we have to show that

Prob[X ≤ (1− δ)µ] < e−
δ
2
µ .

In case δ = 1 this inquality holds true, as we get by using (14)

Prob[X ≤ 0] =
∏

(1− pi ) ≤
∏ <1︷︸︸︷

e−pi <
∏

e−
pi
2 = e−

δ
2
µ

So we can assume δ < 1. Now for any real t > 0 it holds that

Prob[X ≤ (1− δ)µ] = Prob[−tX ≥ −t(1− δ)µ]

= Prob[e−tX ≥ e−t(1−δ)µ] ≤ E [e−tX ]

e−t(1−δ)µ
,

where the two last relations follow because the exponential function
is strictly increasing and by the Markov inequality, respectively.
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Concerning the numerator in the last term above, we have

E
[
e−tX

]
= E

[
e−t

∑n
i=1 Xi

]
= E

[
n∏

i=1

e−tXi

]
=

n∏
i=1

E
[
e−tXi

]
,

where the last equation holds because the Xi are mutually
independent. Furthermore, using (14) again, we have

E
[
e−tXi

]
= pie

−t + (1− pi ) · 1 = 1 + pi (e
−t − 1) ≤ epi (e

−t−1) .

Together, the two last chains of relations yield

E
[
e−tX

]
≤

n∏
i=1

epi (e
−t−1) = e

∑n
i=1 pi (e

−t−1) = e(e−t−1)µ .
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Putting together equations and inequalities from last two slides, we
get

Prob[X ≤ (1− δ)µ] ≤ E [e−tX ]

e−t(1−δ)µ
≤ e(e−t−1)µ

e−t(1−δ)µ
= e(

=:b(t)︷ ︸︸ ︷
e−t−1+t(1−δ) )µ.

Since the exponential function is strictly increasing, the upper
bound eb(t) becomes minimum exactly for values of t such
that b(t) is minimum.

We have b′(t) = −e−t + 1− δ and b′′(t) = e−t , thus for t > 0 the
function b attains its unique minimum at t0 = ln(1/1− δ).
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Plugging the value t0 into the upper bound eb(t) yields

Prob[X ≤ (1− δ)µ] ≤ e−δµ

(1− δ)(1−δ)µ
=

(
e−δ

(1− δ)(1−δ)︸ ︷︷ ︸
>e−δ+δ2/2

)µ

< e(−δ+δ−δ/2)µ = e−
δ2

2
µ .

Recall in this connection that for all δ where |δ| < 1, it holds that

ln(1− δ) = −δ − δ2

2 −
δ3

3 − . . ., hence we have for such δ > 0

ln(1− δ)(1−δ) = (1− δ) ln(1− δ) = (1− δ)(−δ − δ2

2
− δ3

3
− . . .)

= −δ + (1− 1

2
)δ2 + (

1

2
− 1

3
)δ3 + . . . > −δ + δ2/2 ,

that is (1− δ)(1−δ) > e−δ+δ2/2.
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Proof of part b: The proof of part b resembles the one of part a.
For given δ > 0, we have to show that

Prob[X ≥ (1 + δ)µ] <

(
eδ

(1 + δ)(1+δ)

)µ
.

For any real t > 0 it holds that

Prob[X ≥ (1 + δ)µ] = Prob[tX ≥ t(1 + δ)µ]

= Prob[etX ≥ et(1+δ)µ] ≤ E [etX ]

et(1+δ)µ
,

where the two last relations follow because the exponential function
is strictly increasing and by the Markov inequality, respectively.
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Similar to the proof of part a, we infer

E
[
etX
]

= E
[
et

∑n
i=1 Xi

]
= E

[
n∏

i=1

etXi

]
=

n∏
i=1

E
[
etXi

]
,

where the last equation holds because the Xi are mutually
independent. Furthermore, since pi , t > 0 and using (14), we have

E
[
etXi

]
= pie

t + (1− pi ) · 1 = 1 + pi (e
t − 1) < epi (e

t−1) .

Together, the two last chains of relations yield

E
[
etX
]
<

n∏
i=1

epi (e
t−1) = e

∑n
i=1 pi (e

t−1) = e(et−1)µ .
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Appendix: Proof of the Chernov-Hoeffding bound

Proof (continued).

Putting together equations and inequalities from last two slides, we
get

Prob[X ≥ (1 + δ)µ] ≤ E [etX ]

et(1+δ)µ
<

e(et−1)µ

et(1+δ)µ
= e(

=:b(t)︷ ︸︸ ︷
et−1−t(1+δ) )µ.

Like in the proof of part a, we obtain a minimum value of the
upper bound by minimizing b(t).

Now we have b′(t) = et − 1− δ and b′′(t) = et , thus for t > 0 the
function b attains its unique minimum at t0 = ln(1 + δ).

Plugging the value t0 into the upper bound eb(t) yields

Prob[X ≥ (1 + δ)µ] <
eδµ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)(1+δ)

)µ
. ut
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Randomized local search

Boolean formulas in conjunctive normal form

A literal is a Boolean variable or a negated Boolean variable.

A (disjunctive) clause is a disjunction of literals.

A Boolean formula is in conjunctive normal form, or in CNF, for
short, if the formula is a conjunction of clauses.

A Boolean formula is in k conjunctive normal form, or in k-CNF,
for short, if the formula is in CNF such that each clause contains
exactly k mutually distinct variables.

There are more liberal definitions of k-CNF where, for example, it
is simply required that each clause has at most k literals.

In what follows, the actual choice of the notion k-CNF does not
matter too much, though by using the more restrictive notion the
exposition becomes slightly cleaner.



15 Randomized local search 253

Randomized local search

Satisfying assignments

An assignment for a Boolean variable over variables Z1, . . . ,Zn is a
binary word of length n.

The (hamming) distance d(σ, τ) of two words σ and τ of the same
length is the number of positions where the words differ.

With variables Z1, . . . ,Zn are understood, an assignment of
length n is identified in the natural way with a mapping that
assigns to each Zi a truth value, where the symbol 1 denotes true
and 0 denotes false.

Given an appropriate assignment, a Boolean formula can be
evaluated in the usual way. For example, the 3-CNF formula

(Z1 ∨ ¬Z3 ∨ Z4) ∧ (¬Z1 ∨ Z4 ∨ Z5)

is made true or is satisfied by the assignment 10010 but not by the
assignment 10000.
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Randomized local search

Local search guided by unsatisfied clauses

Consider a Boolean formula ϕ in n variables in 3-CNF.

Suppose that ϕ is satisfiable and fix any satisfying assignment σ0.

Then given any assignment σ and any clause of ϕ that is not made
true by σ, the assignments σ and σ0 must differ on at least one of
the variables in this clause.

Consequently, when choosing a variable uniformly at random from
any fixed unsatisfied clause and flipping the value of the
assignment σ for this variable, with probability at least 1/3 one
obtains an assignment that is strictly closer to σ0 than σ.

For example, when starting at an assignment σ where d(σ, σ0) ≤ j
and iterating such random flips j times or more, one reaches σ0

with probability of at least 3−j .



15 Randomized local search 255

Randomized local search

Algorithm LocalSearch(ϕ, σ, r) (Randomized Local Search)

Input: A Boolean formula ϕ in n variables in 3-CNF.
An assignment σ ∈ {0, 1}n and a natural number r .

While r ≥ 1 and ϕ(σ) = false
Pick the least clause of ϕ that is not made true by σ.
Pick a variable in this clause uniformly at random.
Flip the value of the assignment σ at this variable.
Let r = r − 1.

Output: The modified assignment σ.

Suppose ϕ is satisfiable and σ0 is any fixed satisfying assignment.

The hamming distance d(σ, σ0) either increases or decreases by 1
during each iteration of the while loop in algorithm LocalSearch.

Furthermore, a decrease occurs with probability of at least 1/3.
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Randomized local search

Consider an invocation LocalSearch(ϕ, σ, r) such that ϕ has a
satisfying assignment σ0 that has distance j ≤ r from σ.

The probability of finding some satisfying assignment during this
invocation is at least as good as reaching the origin in a

one-dimensional random walk of length r that
starts at position j and
moves left and right with probability 1/3 and 2/3, respectively.

Local search and random walks

In the exursus on random walks below, it is demonstrated that the
origin is reached in such a random walk with probability of at
least 2−(j+1) in case r ≥ 27j .

By invoking LocalSearch with r = 27n, the probability of finding a
satisfying assignment is at least 2−(j+1), provided that the initial
assignment has distance at most j to some satisfying assignment.
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Randomized local search

The probability of starting close to a satisfying assignment

In case the an assignment σ is chosen uniformly at random from
all assignments in {0, 1}n, what is the probability for choosing a
assignment that has distance j to some fixed satisfying assignment?

Assuming that ϕ is satisfiable, fix any satisfying assignment σ0.

Choosing the assigment σ uniformly at random amounts to tossing
a fair coin for each bit of σ.

Equivalently, one could toss a fair coin for each position in order to
decide whether σ should agree with the corresponding bit of σ0.

Accordingly, the number of positions where the randomly chosen
assignment σ and the fixed assignment σ0 differ will be distributed
according to a Binomial distribution with parameter 1/2, i.e.,

Prob[d(σ, σ0) = j ] =

(
n

j

)(
1

2

)j (1

2

)n−j
=

(
n

j

)(
1

2

)n

.
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Randomized local search

Success probability of randomized local search

What is the probability of finding a satisfying assignment on an
invocation LocalSearch(ϕ, σ, 27n), where ϕ is satisfiable and σ is
chosen uniformly at random?

By putting together the probabilities for an initial assignment to be
at distance j from some fixed satisfying assignment and the lower
bound of pj/2 = 2−(j+1) on the success probability in this case, the
probability of finding a satisfying assignment is at least

n∑
j=0

Prob[d(σ, σ0) = j ]
pj
2

=
n∑

j=0

(
n

j

)
1

2n
1

2j+1
=

1

2n+1

n∑
j=0

(
n

j

)
1

2j

=
1

2n+1

(
1 +

1

2

)n

=
1

2

(
3

4

)n

.
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Randomized local search

Independent trials

If a chance experiment with probability 1/n for success is repeated
independently n times, the probability of obtaining at least one
success is at least 0.6.

The probability of obtaining no success is equal to (1− 1/n)n,
which goes increasingly to 1/e < 0.4 when n goes to infinity.

Iterated local searches

For a satisfiable formula ϕ and an assignment σ chosen uniformly
at random, an invocation LocalSearch(ϕ, σ, 27n) will return a
satisfying assignment with probability of at least (3/4)n/2.

When invoking the algorithm 2(4/3)n times independently, the
probability of finding a satisfying assignment is at least 0.6 in case
the input formula is indeed satisfiable and, otherwise, is 0.
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Randomized local search

By the preceding discussion, the following algorithm, when applied
to a satisfiable Boolean formula, will return a satisfying assignment
with probability at least 0.6.

The running time of the algorithm is a polynomial in n times the
number of invocations of LocalSearch, hence is in O(1.34n).

Algorithm LocalSearch(ϕ) (Iterated Local Search)

Input: A Boolean formula ϕ in n variables in 3-CNF.

Let i = 1 and σ = 0n.
While i ≤ 2 ·

(
4
3

)n
and ϕ(σ) = false

Pick an assignment σ uniformly at random from {0, 1}n.
Let σ := LocalSearch(ϕ, σ, 27n).
Let i := i + 1.

Output: The current assignment σ.
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Excursus on random walks

Random walks

Consider the chance experiment where

a token moves at random on the x-axis such that at times
t = 0, 1, . . . the token is at position Xt in {0, 1, . . .},
if Xt = 0, then Xt = Xt+1 = Xt+2 = . . .,
if Xt 6= 0, then Xt+1 is equal to Xt − 1 or Xt + 1 with
probability α and 1− α, respectively.

Such a sequence of random variables X0,X1, . . . is called a
one-dimensional random walk with the origin as absorbing point
and uniform transition probabilities α and 1− α.

The sequence X0,X1, . . . forms a Markov chain because

the Xi satisfy the Markov property, i.e., for all t the probability
distribution of Xt+1 is determined by the value of Xt alone,
in the sense that the probability distribution of Xt+1 conditioned
on Xt and on X1, . . . ,Xt is the same.
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Excursus on random walks

The probability of reaching the origin

For a random walk X0,X1, . . . as above and with the value of the
parameter α understood, let pj = pj(α) denote the probability that
the token starting at position j eventually reaches the origin, i.e.,
the probability that Xi = 0 for some i ≥ 0, given that X0 = j .

Calculating the probabilities pj

For all j ≥ 0, it holds that pj = pj1.

Trivially, we have p0 = 1 = p0
1 and p1 = p1

1 .

For j ≥ 2, reaching the origin from position j amounts to

first reaching position j − 1, starting at position j ,
then reaching position j − 2, starting at position j − 1,
and so on until the origin is reached,

where the corresponding events all have probability p1 and are
mutually independent, hence pj = pj1.



15 Randomized local search 263
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Calculating the probabilities pj

In case α = 1, we must have pj = 1 for all j , so assume α < 1.

For all j ≥ 1 we have pj = αpj−1 + (1− α)pj+1.

For the special case j = 1, this yields

p1 = αp0 + (1− α)p2 = α + (1− α)p2
1 , which is equivalent to

0 = p2
1 −

1

1− α
p1 +

α

1− α
= (p1 − 1)(p1 −

α

1− α
) .

Case α ≥ 1/2.

For such α, we have α/(1− α) ≥ 1, hence the second solution
for p1 is at least 1, i.e., either agrees with the first solution or
cannot be a probability.

As a consequence, the only admissible solution for the value of the
probabillity p1 is p1 = 1.

By pj = pj1, for α ≥ 1/2 the pj are all equal to 1.
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Calculating the probabilities pj

The random walk where α = 1/2 is called the symmetric random
walk. The fact that a symmetric random walk starting at any
position j with probability 1 will eventually reach the origin is
sometimes referred to as gambler’s ruin.

Case α < 1/2.

We will argue in a minute that in this case the probability p1 must
differ from 1, hence the only admissible solution is

p0 = 1, p1 =
α

1− α
, and pj = pj1 =

(
α

1− α

)j

for all j ≥ 0 .

In case α = 1/3 most relevant to us, we obtain pj = 1/2j

More general, in case α = 1/k for some k ≥ 1, we have

α

1− α
=

1/k

(k − 1)/k
=

1

k − 1
, hence pj =

1

(k − 1)j
.
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Excursus on random walks

Calculating the probabilities pj

Case α < 1/2 (continued). It remains to show that for α < 1/2
the probability p1, and hence p2, p3, . . . are strictly smaller than 1.

If we let Ri be the indicator variable of move i being to the right,
then Prob[Ri = 1] = 1− α = 1/2 + ε for some ε > 0.

Reaching the origin eventually implies that for some t ≥ j the
origin is reachd first after exactly t moves, which in turn implies
that at most half of the these t moves have been to the right.

Similar to the discussion on probability amplification, the
Chernov-Hoeffding bound then yields for all j > 0,

pj ≤
∞∑
t=j

Prob

[
t∑

i=1

Rt ≤ t/2

]
<

∞∑
t=j

(e−
ε
2︸︷︷︸

<1

)t <∞ ,

So the pj are smaller than the tail sums of a converging series, thus

become arbitrarily small for large j , hence p1 < 1 due to pj = pj1.
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Restricting the length of the random walk

The probabilities pj we have just been calculated give the
probability of eventually reaching the origin when starting at
position j .

We will see next that for all sufficiently large j , the probability of
reaching the origin from position j will become only marginally
smaller if the total number of moves allowed is restricted to dj for
some appropriate constand d that depends on α.

We will restrict attention to fixed values α = 1/3 and d = 27. The
argument extends naturally to the more general case α = 1/k .

For α = 1/3, assume that the token does not reach the origin
within the first 27j moves, and consider the position reached
after 27j moves. The probability that this position is at most, say,
4j , is very small. If, on the other hand, the position is larger
than 4j , the probability of still reaching the origin from there is
much smaller than for the initial position j .
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Restricting the length of the random walk

For a given initial position X0 = j , we define the following events

E the token reaches the origin eventually,
F the token reaches the origin within the first 27j moves,
S the token reaches the origin after strictly more than 27j

moves and X27j ≤ 4j
L the token reaches the origin after strictly more than 27j

moves and X27j > 4j .

The last three events partition the first one, hence we have

pj = Prob[E ] = Prob[F ] + Prob[S ] + Prob[L] .

We will argue next that Prob[S ] and Prob[L] are rather small
compared to Prob[E ], and that hence Prob[F ] ≥ Prob[E ]/2.
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Restricting the length of the random walk

The event L occurs if and only if

event E occurs, i.e., the origin is eventually reached, and
X27j > 4j (note that this implies Xi > 0 for all i ≤ 27j).

Accordingly, we have

Prob[L] = Prob[E&X27j > 4j ]

= Prob[E |X27j > 4j ]︸ ︷︷ ︸
≤p4j

Prob[X27j > 4j ]︸ ︷︷ ︸
≤1

≤ p4j =
pj
23j

,

where the last inequality holds due to pi = 1/2i .
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Restricting the length of the random walk

In order to bound the probability of S , recall that the event S
occurs if and only if the origin is reached but not during the
first 27j moves and X27j ≤ 4j . Let S̃ be the event that the origin is
not reached during the first 27j moves and X27j ≤ 4j . Then S is a

proper subset of S̃ , hence S is less likely than S̃ .

Consider a variant of the random walk where the origin is no
longer absorbing, i.e., whenever the token reaches the origin or a
negative position, it continues moving left or right with the given
probabilities.

Let X ′t be the position of the token after t moves when starting the
new random walk at position j and let S ′ be the event X ′27j ≤ 4j .

The event S̃ is less likely than S ′ since for each walk in S̃ there is a
unique corresponding walk in S ′, whereas S ′ contains some
additional walks that reach the origin during the first 27j moves at
least once.
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Restricting the length of the random walk

Recall that the event S ′ occurs if and only if X ′27j ≤ 4j .

So S ′ occurs if and only if among the first 27j moves there are at
most 15j moves to the right.

The expected number of moves to the right is 27j 2
3 = 18j .

In order to apply the Chernov-Hoeffding bound, let Ri be the
indicator variable of move i being to the right, i.e., Ri = 1 in
case Xi − Xi−1 = 1 and Ri = 0, otherwise.

Let R = R1 + · · ·+ R27j and observe that E [R] = 27j 2
3 = 18j .

For δ = 1/6, the Chernov-Hoeffding bound yields

Prob[S ′] = Prob[X ′27j ≤ 4j ] = Prob[R ≤ 15j ]

= Prob[R ≤ (1−δ)E [R]] ≤ e−
δ
2
E [R] = e−

3
2
j < 2−2j =

pj
2j
,

where the last inequality holds because of log e > 1.44 > 4/3.
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Exhaustive local search

An invocation LocalSearchExh(ϕ, σ, r) results in an exhaustive
local search up to depth r on the same tree as for randomized local
search, i.e., the tree has root σ and 3 descendants per inner node.

Algorithm LocalSearchExh(ϕ, σ, r) (Exhaustive Local Search)

Input: A Boolean formula ϕ in n variables in 3-CNF.
An assignment σ ∈ {0, 1}n and a natural number r .

(The satisfying assignment found first, if any, during the recursive
invocations is returned via the global variable α.)

If ϕ(α) = false and ϕ(σ) = true, let α := σ.
If r ≥ 1 and ϕ(α) = false

Pick the least clause of ϕ that is not made true by σ.
For all three variables in this clause

Let σ′ be obtained from σ by flipping the
value of σ at this variable.

LocalSearchExh(ϕ, σ′, r − 1) .
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Exhaustive local search

Proposition Verification of LocalSearchExh.

Let ϕ be a Boolean formula in n variables in 3-CNF. Let σ and σ0

be any assignments for the variables in ϕ such that d(σ, σ0) ≤ r
and σ0 is a satisfying assignment.

Invoking LocalSearchExh(ϕ, σ, r) yields a satisfying assigment.

Proof. All recursive invocations eventually terminate because

the parameter r is counted down,
the conditions of the if-clauses are such that whenever a least
unsatisfied clause is picked indeed σ does not make ϕ true.

In case α is ever set equal to a satisfying assignment, then α will
never be changed afterwards and we are done, so assume otherwise.

By induction on r , we obtain a contradiction. For r = 0, α is set
to the satisfying assignment σ = σ0. For r ≥ 1, either ϕ(σ) = true
and α is set to σ, or by the induction hypothesis an invocation
LocalSearchExh(ϕ, σ′, r − 1) finds a satisfying assignment since at
least one of the assignments σ′ is strictly closer to σ0 than σ. ut
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From the exhaustive version of local search the following
deterministic algorithm for 3-SAT is immediate, which runs faster
than an exhaustive search over all assignments.

Example

Let ϕ be a Boolean formula in n variables in 3-CNF. Then any
assignment for ϕ has distance at most n/2 from one of the
assignments 0n and 1n.

Accordingly, the formula ϕ is satisfiable if and only if a satisfying
assignment is returned by at least one of the invocations

LocalSearchExh(ϕ, 0n,
n

2
) and LocalSearchExh(ϕ, 1n,

n

2
) .

This yields a deterministic algorithm for 3-SAT that runs in time

poly(n) 3
n
2 = poly(n)

(√
3
)n
≤ poly(n) 1.74n .
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Exhaustive local search

Is it possible to further optimize the radius n/2 in the last example?

Definition Volume of a discrete ball

The n-dimensional ball with center σ ∈ {0, 1}n and radius r is

B(σ, n, r) = {τ ∈ {0, 1}n : d(σ, τ) ≤ r}

Since by symmetry the volume of an n-dimensional ball with
radius r does not depend on the center σ, we denote this volume by

vol(n, r) = |B(0n, n, r)| .

The members of the ball B(0n, n, r) can be uniquely described by
the set of j ≤ r positions where they differ from 0n, i.e., where they
have a 1. Consequently, the exact volume of the ball B(0n, n, r) is

vol(n, r) =
r∑

j=0

(
n

j

)
.

however, the expression on the right-hand side is hard to work with.
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Exhaustive local search

Definition Binary entropy function

The volume of a discrete ball can be approximated by using the
binary entropy function H defined by

H : (0, 1)→ [0, 1]

ρ 7→ −ρ log ρ− (1− ρ) log(1− ρ) .

Proposition Approximate volume of a ball

In order to approximate the volume of the n-dimensional ball with
radius r let ρ = r/n and v(n, r) = 2H(ρ)n.

Then for all sufficiently large n and for r ≤ n/2 it holds that

v(n, r)

n
≤ vol(n, r) ≤ v(n, r) .
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Comparing exhaustive local search to exhaustive search

Any invocation LocalSearchExh(ϕ, σ, r) where ϕ is a Boolean
formula in k-CNF will find a satisfying assignment for ϕ if and only
if there is a satisfying assignment in the ball of radius r around σ.

So LocalSearchExh(ϕ, σ, r) checks whether the set B(σ, n, r) of
size vol(n, r) contains a satisfying assignment, by searching
exhaustively a tree that has at most

ak(n, r) := 2k r ≥ k0 + k1 + · · ·+ k r

many nodes (observe that not all leaves need to have depth k).

The advantage of exhaustive local search to depth r over an
exhaustive search over all assignments in vol(n, r) comes from the
fact that for appropriately chosen r , we have ak(n, r) < vol(n, r).

In the example above, for k = 3 and r = n/2 we had

ak(n, r) ≤ 2 · 1.74n and vol(n, r) ∼ 2n−1 .
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Optimum ball size for exhaustive local search

For which choice of r will the ratio of the size of the search tree of
depth r and a ball of radius r be minimum?

We formulate the minimization in terms of the parameter ρ = r/n.

Approximating the size of the search tree and the volume of the
corresponding ball by the already derived upper and lower bound,
respectively, the ratio is bounded from above by

ak(n, r)
1
nv(n, r)

=
2nk r

2H(ρ)n
= 2n · 2(ρ log k−H(ρ))n .

The first derivative of H(ρ) is − log( ρ
1−ρ), and accordingly the

exponent is minimized for ρ such that

log k + log(
ρ

1− ρ
) = 0 ⇔ ρ

1− ρ
=

1

k
⇔ ρ =

1

k + 1
.
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Exhaustive local search

How big are the benefits from the optimum ball size?

Plugging the optimum value ρ = 1
k+1 , i.e., r = n

k+1 , into the upper
bound for the ratio of tree size and ball volume yields

ak(n, r)
1
nv(n, r)

=
2nk r

2H(ρ)n
= 2n ·

(
k

1
k+1

2H( 1
k+1

)

)n

= 2n ·
(

k

k + 1

)n

,

because of

k
1

k+1

2H( 1
k+1

)
= k

1
k+1 · 2

1
k+1

log 1
k+1

+ k
k+1

log k
k+1

= k
1

k+1 ·
(

1

k + 1

) 1
k+1

·
(

k

k + 1

) k
k+1

=

(
k

k + 1

) 1
k+1

·
(

k

k + 1

) k
k+1

=
k

k + 1
.
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Exhaustive local search

Exhaustive local search starting at a random assignment

Let ϕ be a Boolean formula in n variables in k-CNF, let σ0 be
some fixed assignment for ϕ, and let r ≤ n.

If we choose an assignment σ uniformly at random from the 2n

assignments for ϕ, then the three following events are all the same

σ is in the ball B(σ0, n, r),
the distance d(σ0, σ) is at most r ,
σ0 is in the ball B(σ, n, r),

hence all three share the probability vol(n, r)/2n of the first one.

As a consequence, in case ϕ is indeed satisfiable, a single
invocation LocalSearchExh(ϕ, σ, r) of exhaustive local search
where the initial assignment σ is chosen uniformly at random will
find a satisfying assignment with probability of at least

vol(n, r)

2n
.
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A randomized algorithm based on exhaustive local search

Let ϕ be a satisfiable Boolean formula in n variables in k-CNF.

In case for some natural number t exhaustive local search is
invoked t2n/vol(n, r)) times where the initial assignments are
chosen independently and uniformly at random, then the
probability of not finding any satisfying assignment is at most(

1− vol(n, r)

2n

) t2n

vol(n,r)

≤ e−t < 2−t .

Trivially, this error bound remains valid with a larger number of
independent invocations of exhaustive local search, and we will use
the larger but easier to compute number of invocations equal to

t
n2n

v(n, r)
=

t2n

1
nv(n, r)

≥ t2n

vol(n, r)
.
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Exhaustive local search

A randomized algorithm based on exhaustive local search

The randomized algorithm that uses tn2n/v(n, r) indpendent
invocations of exhaustive local search has probability of at
most 2−t of not finding any given satisfying assginment.

Using the optimum value r = 1/(k + 1) derived above, this
randomized algorithm then explores at most a number of
assignments equal to

tn2n
ak(n, r)

v(n, r)
≤ tn2n2n ·

(
k

k + 1

)n

= 2tn2 ·
(

2k

k + 1

)n

.

Example

For the case k = 3 and with t = n2, we obtain a randomized
algorithm that checks satisfiability of formulas in 3-CNF in
time poly(n)1.5n with probability of error of at most e−n

2
.
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The randomized algorithm based on exhaustive local search can be
derandomized by using covering codes (see the excursus below),
that is, sets of words of a given length n such that the balls around
this words of radius r cover the set of all words of length n in the
sense that each such word is in at least one of these balls.

In the exursus it is demonstrated that for all sufficiently large n and
all r < n/2 there is a covering code of size

|C | ≤ poly(n)
2n

v(n, r)

such that computing the list of all words in C in lexicographical
order takes time poly(n)|C |.
Let ρ = 1/(k + 1) be the optimum relative radius from above and
let r = nρ = n/(k + 1) be the corresponding radius.

Running exhaustive local search for all balls of radius r around all
the codewords in such a code then takes time of at most

poly(n)
2n

v(n, r)
ak(n, r) ≤ poly(n)2n2n

(
k

k + 1

)n

≤ poly(n)

(
2k

k + 1

)n

.
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Definition Covering code

A set C of words of length n is a covering code of radius r in case
the union of the balls with radius r around the words w in C
contain all words of length n, i.e.,

{0, 1}n =
⋃
w∈C

B(w , n, r) .

Equivalently, a set C of words of length n is a covering code of
radius r if for any word u of length n there is some word w in C
such that d(w , u) ≤ r .

Note that for a covering code of radius r it is not required that the
balls of radius r around the code words are mutually disjoint.
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A covering code of codeword length n and radius r must have size
of at least 2n/vol(n, r), and this size can be almost realized.

Theorem

For any n and r < n there is a covering code C of codeword
length n and radius r of size

|C | ≤ n2n

vol(n, r)
≤ n22n

v(n, r)
.

Proof. First observe that the second inequality holds independently
of C because v(n, r)/n is a lower bound on vol(n, r).

Suppose a set C of size n2n/vol(n, r) is picked independently and
uniformly at random from the set of all words of length n.

We will argue next that with probability strictly larger than 0 the
set C will be a covering code as required, which then shows that
there is a covering code as required.
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Excursus on covering codes

Proof (continued). Let Eu be the event that word u is in none of
the balls of radius r around the n2n/vol(n, r) words in C .

We have seen above that for any given word u, Prob[Eu] ≤ e−n.

The sum of the error probabilities Prob[Eu] over the 2n words of
length n is strictly less than 1, hence with probability strictly larger
than 0, the set C is a covering code. ut
The size of the covering code asserted by the theorem exceeds the
trivial lower bound only by a factor of n.

But the time required for computing such a covering code may be
too large to obtain a reasonable derandomization of the
randomized algorithm for satisfiability based on exhaustive local
search.

In the remainder of this excursus, we will construct covering codes
that are slightly larger than the one asserted by the theorem but
which can be computed fast enough to yield a deterministic
algorithm based on exhaustive local search, which has essentially
the same running time as the randomized algorithm.
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Excursus on covering codes

Theorem

For any n > 0 and radius r ≤ n/2 there is a covering code C of
codeword length n and radius r of size

|C | ≤ n3 2n

v(n, r)
. (15)

such that computing the list of all words in C in lexicographical
order takes time poly(n)23n.

Proof: To ask for a covering code as required is an instance of the
minimum set cover problem where

the base set A is the set of all words of length n,
all balls of radius r around the words of length n can be used
in the set cover.
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Proof (continued): The greedy algorithm for the minimum set
cover problem yields a covering code of size at
most 1 + ln vol(n, r) ≤ n times the minimum size of such a code.

There is a covering code of radius r of size at most n22n/v(n, r).

So the greedy algorithm yields a covering code of the required size.

The greedy algorithmus can be implemented via counters for each
word w that count how many words in the ball B(w , n, r) are not
yet covered.

Then each of the at most 2n iterations of the while loop of the
greedy algorithm requires to run twice through all words of
length n, first, in order to pick the next set to be put into the
cover, second, in order to update the counters.

Updating a single count can be done in time poly(n)2n, hence the
running time per iteration is in poly(n)22n, and the theorem
follows. ut
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When applying the greedy algorithm for set cover in order to
obtain a covering code, the upper bound on the running time
of poly(n)23n is still too large with respect to intended
applications.

This problem can be easily overcome by working with direct sums
of covering codes of small enough length.

Theorem

For all sufficiently large n and any r < n/2 there is a covering
code C of codeword length n and radius r of size

|C | ≤ poly(n)
2n

v(n, r)

such that the list of all words in C in lexicographical order can be
computed in time

poly(n)

(
2n

v(n, r)

)
.
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Proof. Fix any n and r < n/2 and let ρ = r/n.

Let d > 0 be a constant to be specified later.

Consider a word of length n as the concatenation of d words of
length n0 = bn/dc and a possibly empty suffix of length n′0 ≤ d .

Let C0 be a covering code of codeword length n0 and
radius r0 = bρn0c that has size at most n3

02n0/v(n0, r0) and can be
computed in time poly(n0)23n0 .

Let C ′0 be equal to {0, 1}n′0 .

Let C be the direct sum of d copies of C0 and one copy of C ′0, i.e.,
C contains exactly all concatenations of d words in C0 plus a word
in C ′0 (where C ′0 contains just the empty word in case n′0 = 0).

By construction, C is a covering code of codeword length n and
radius of at most r .
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Proof (continued). The size of C is at most(
n3

0

2n0

v(n0, r0)

)d

· 2n′0 ≤ 2n
′
0

(n
d

)3d 2dn0

2dH(ρ)n0
≤ poly(n)

2n

v(n, r)
.

The time required to compute C is a polynomial in n times the
time required to construct C0, which is at most a polynomial in n
times

23n0 ≤ 2
3n
d ≤ 2(1−H(ρ))n =

2n

v(n, r)
.

in case we choose 3/d ≤ 1−H(ρ). ut
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The weighted minimum set cover problem

Let S1, . . . ,Sm be subsets of some finite set A where each set Sj
has a rational weight wj . The weighted minimum set cover
problem asks for a subset J of the index set {1, . . . ,m} that
covers A in the sense that ⋃

j∈J
Sj = A (16)

and, among all such subsets J, has minimum weight sum
∑

i∈J wj .

The special case where all the weights are equal to 1 is called the
minimum set cover problem, i.e., the minimum set cover problem
asks for a set J of minimum cardinality that satisfies (16).

The minimum set cover problem is NP-hard

Unless P = NP, in deterministic polynomial time it is neither
possible to solve the minimum set cover problem nor to compute
the size of a minimum set cover, hence similar remarks hold for the
weighted version.
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The greedy algorithm MinimumSetCover yields an approximation
to the solution of the weighted set cover problem that is provably
only slightly heavier than the minimum set cover.

Algorithm MinimumSetCover(A, S1, . . . , Sm, w1, . . . , wm)

Input: A finite set A, subsets S1, . . . , Sm of A where A ⊆ ∪mj=1Sj ,
and rational weights w1, . . . , wm.

Let J := ∅, S := ∅.
While A 6= S (i.e., while S is not a set cover)

For all j ∈ {1, . . . ,m} where Sj 6⊆ S let γj :=
wj

|Sj\S | .

Let J = J ∪ {j} for some j where γj is minimum.
Let S = ∪j∈JSj .

Output: The set cover J.
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Proposition

Consider an instance of the weighted minimum set cover problem
where the sets Si all have size at most n. Then on this input, the
algorithm MinimumSetCover returns a set cover that has weight
of at most 1 + ln n times the weight of a minimum set cover.

Proof: We omit the easy proofs that the algorithm always
terminates and returns a set cover for the given input.

In order to show that the algorithm computes a set cover of
minimum weight, fix any input A, S1, . . . , Sm, w1, . . . , wm.

Let J∗ be any set cover of minimum weight w∗ for this input.

Let Jalgo be the set cover of weight walgo returned by the
algorithm.

We refer by the term stage to a single iteration of the while loop.

With a stage understood, the terms S and J refer to the
corresponding values at the beginning of the stage.
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For any a in A, say a becomes covered via set Sj if a is not in S at
the beginning of some stage but a is in Sj and the index j is put
into J during this stage.

In case a becomes covered via set Sj , then say that a contributes

contr(a) =
wj

|Sj \ S |

where the value of S refers to the state when j is put into J.

When the index j is put into J during a stage, then the weight wj

of Sj is equal to the sum of the contributions of all a that become
convered at that stage since∑

a∈Sj\S

contr(a) = |Sj \ S |
wj

|Sj \ S |
= wj .

Since each a in A becomes covered via a unique set Sj , we have

walgo =
∑

j∈Jalgo

wj =
∑

j∈Jalgo

∑
{a∈A : a becomes

covered via Sj}

contr(a) =
∑
a∈A

contr(a) .
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Excursus on the set cover problem

So we are done by

walgo =
∑
a∈A

contr(a) ≤
∑
j∈J∗

∑
a∈Sj

contr(a)

≤
∑
j∈J∗

(1 + ln n)wj = (1 + ln n)w∗ ,

where the relations, from left to right, hold by the discussion on
the last page, because J∗ is a set cover, by the inequality to be
shown next, and because w∗ is the weight of the cover J∗.

It remains to show for all j ∈ J∗ that∑
a∈Sj

contr(a) ≤ (1 + ln n)wj .
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Excursus on the set cover problem

We fix any j in J∗ and show
∑

a∈Sj contr(a) ≤ (1 + ln n)wj .

Let as , . . . , a1 be the members of Sj in the order in which they
become covered during the stages of the algorithm, i.e., as
becomes covered first, as−1 becomes covered next, and so on.

If ai becomes covered via set S` at some stage, we have

contr(ai ) =
w`

|S` \ S |︸ ︷︷ ︸
=γ`

≤
wj

|Sj \ S |︸ ︷︷ ︸
=γj

≤
wj

i

by definition of the contribution of a, because at this stage ` is put
into J, and, finally, by the definition of the order on Sj .

Recalling that the nth Harmonic number H satisfies

Hn = 1 +
1

2
+ · · · 1

n
≤ 1 + ln n , we obtain

∑
a∈Sj

contr(a) = contr(a1) + · · ·+ contr(as)

≤
wj

1
+ · · ·+

wj

s
≤ Hnwj ≤ (1 + ln n)wj . ut



17 Key agreement 297

Symmetric-key and public-key cryptography

Classical cryptographic protocols depend on the use of secret
information that has been agreed on in advance.

E.g., in classical protocols for sending encrypted messages over an
insecure channel, sender and receiver share a secret key that allows

the sender to encrypt the plaintext message,
the receiver to decrypt the received ciphertext message.

One-time pad encryption scheme

A wants to send to B a message w = w1 . . .wn, wi ∈ {0, 1},
over an insecure channel, which can be read by an adversary E.

Using a secure channel, A and B exchange in advance a random
word r = r1 . . . rn obtained by independent tosses of a fair coin.

A sends to B the word w ⊕ r = (w1 ⊕ r1) . . . (wn ⊕ rn),
from which B can recover the message w = (w ⊕ r)⊕ r .
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Symmetric-key and public-key cryptography

A cryptographic protocol is referred to as symmetric-key protocol,
if the two parties involved share an otherwise secret key
(or, which is essentially the same, in case the two parties have
different keys that can be easily computed from each other).

Opposed to symmetric-key protocols are public-key protocols,

The introduction of public-key techniques in the 1970ies can be
seen as the beginning of modern cryptography, while before, in
classical cryptography, essentially all cryptographic protocols were
symmetric-key protocols.

Private and public keys

In public-key protocols, each party has a private key and a public
key. The private key is kept secret and is only known to the
respective party, while the public key is indeed published.
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Symmetric-key and public-key cryptography

In a public-key protocol for sending encrypted messages over an
insecure channel from sender B to receiver A,

B uses A’s public key for encrypting the plaintext message.
A uses it private key for decrypting the ciphertext message.

Public and private key of each party must match, in fact, usually
determine each other.

However, in case it were feasible to obtain the private key from the
public key, the protocol would be insecure.

Hardness assumption

In public-key protocols it is assumed that even for a randomized
algorithm it is not feasible to compute from a public key any
relevant information about the corresponding private key.

More precisely, it is assume that any such computation either has
only a negligible chance of success or runs unrealistically long.
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Symmetric-key and public-key cryptography

In order to render the hardness assumption plausible, public-key
protocols are based on computational tasks that are believed to be
infeasible in the strong sense that even a randomized algorithm has
either negligible chance of success or must run unrealistically long.

Common choices of such computational tasks are

factorization, i.e., computing the prime factors of a given
natural number n,
computing discrete logarithms, i.e., computing the discrete
logarithm logd a for a given member a of some fixed cyclic
group (G , ·) and some fixed generator d of G .

In what follows, we will consider public-key protocols that are
based on the assumption that for suitable primes p discrete
logarithms in the multiplicative group Z∗p are hard to compute with
respect to any given generator d .

These protocols can also be based on suitable other cyclic groups.
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Key agreement

For a start, we consider public-key protocols for the cryptographic
primitive key agreement.

Consider the situation where A and B want to agree on a shared
but otherwise secret key K ,

where the channel between A and B is not secure against
being read by a third party E, and
without being able to use another, secure channel before or
during the protocol,

Note that we assume that E may read but cannot change the data
transferred over the given channel.

The third party E is referred to as adversary or eavesdropper,
where the latter term refers in particular to somebody just reading
the information transmitted over the channel.
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Key agreement

The following protocol is meant to allow A and B to agree on a
secret key without being able to use a secure channel before or
during the protocol.

Protocol Diffie-Hellman key agreement

Initialization A and B select and publish a suitable prime
number p and a generator d of Z∗p.

Step 1 A and B choose uniformly and independently (of
each other) a secret natural number iA and iB ,
respectively, from {1, . . . , p − 1}.

Step 2 A sends d iA to B and B sends d iB to A.

Step 3 A computes the key (d iB )iA .
B computes the key (d iA)iB .

Result A and B know the secret key
(d iB )iA = d iA·iB = (d iA)iB .



17 Key agreement 303

Key agreement

The following protocol is very similar to the Diffie-Hellman key
agreement protocol but uses a public-key infrastructure.

Protocol ElGamal key agreement

Initialization Each user A selects an appropriate prime p,
a generator d of Z∗p, and a random natural
number iA in {1, . . . , p − 1}; furthermore,
A keeps iA secret and publishes (p, d , d iA).

Step 1 B obtains a valid copy of A’s public key (p, d , d iA).
B chooses uniformly at random a secret natural
number iB in {1, . . . , p − 1}.
B sends d iB to A and computes (d iA)iB .

Step 2 A computes the key (d iB )iA .

Result A and B know the secret key
(d iB )iA = d iA·iB = (d iA)iB
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Public-key encryption

The public-key infrastructure from the ElGamal key agreement
protocol can also be used for directly sending encrypted messages.

Protocol ElGamal public-key encryption

Goal B wants to send to A a message m
in {1, . . . , p − 1} over an insecure channel.

Initialization Each user A selects an appropriate prime p,
a generator d of Z∗p, and a random natural
number iA in {1, . . . , p − 1}; furthermore,
A keeps iA secret and publishes (p, d , d iA).

Step 1 B obtains a valid copy of A’s public key (p, d , d iA).
B chooses uniformly at random a secret natural
number iB in {1, . . . , p − 1}, computes the values
m · (d iA)iB and d iB , and sends both values to A.

Step 2 A computes m = m · ( d iB )iA︸ ︷︷ ︸
=(d iA )iB

(d iB )(p−1)−iA .

Result B has securely sent the message m to A.
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Excursus on cyclic groups and discrete logarithms

Recall that a group (G , ◦) is a set G with a binary operation ◦
on G such that ◦ is associative, there is a neutral element e and
every a ∈ G has an inverse a−1, i.e., a ◦ a−1 = e.

Definition Cyclic group

A member d of a finite group (G , ◦) is a generator of G in case G
can be written as {d , d1, d2, . . . , d |G |}.
A finite group (G , ◦) is cyclic if it contains a generator.

The infinite group (Z,+) of integers under addition is also called
cyclic because Z can be written as {. . . , 1−2, 1−1, 1−0, 11, 12, . . .},
where 1−k is equal to −k and 1k is equal to k. Up to
isomorphism, this is the only infinite cyclic group.

Remark

For any finite group (G , ◦) and any a ∈ G we have a|G | = e.

Accordingly, for a cyclic finite group (G , ◦) with generator d , for
every i ∈ {0, . . . , |G |} it holds that (d i )−1 = d |G |−i .
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Excursus on cyclic groups and discrete logarithms

Standard examples of cyclic groups are given by Z∗n, the
multiplicative group of residues modulo a natural number n that
are units, i.e., that have a multiplicative inverse.

For a prime p, all residues except 0 = p are units, hence we have

Z∗p = {1, . . . , p − 1}.

In particular, |Z∗n| = p − 1 and thus ap−1 = 1 for all a ∈ Z∗p.

Definition

Given a generator d of a cyclic group G of order n and some b
in G , we write logd b for the discrete logarithm of b to base d ,
which is the unique number x in {0, . . . , n − 1} such that b = dx .
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Zero-knowledge protocols

Problem: A wants to identify herself to B.

This problem arises for example when
- A wants to log on to computer B,
- A is a customer, B an internet bank.

Standard solutions

A identifies herself by her secret, e.g., by password or PIN.
In order to avoid that somebody overhearing the communication
may learn about A’s secret, one may use protocols where
- each password is used only once,
- the secret is not revealed but is just used to solve some task.

Ideal solution

Not even B can obtain any relevant information while
communicating with A, even if B deviates from the protocol.
There are such protocols, which are called
interactive proof systems with the zero-knowledge property.
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Zero-knowledge protocols

Definition

Let G = (V ,E ) be a graph. A k-coloring of G is a mapping

g : V → {1, . . . , k} .

A coloring of G is a k-coloring of G for some k. A coloring is legal
if g(u) and g(v) are distinct for all edges {u, v} in E .

A’s secret will be a legal k-coloring of a graph G , where it is
assumed that it is infeasible to compute a legal k-coloring of G .

Assumption

For the sake of the argument, assume that there is a randomized
procedure such that for sufficiently large inputs n and k ,

the procedure yields a graph G with n nodes together with a
legal k-coloring of G ,
knowing only G and k , it is infeasible to compute a legal
k-coloring of G .
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Zero-knowledge protocols

Protocol Coloring

Assumption: A knows a legal k-coloring g of G and has access
to a random source not known to B.

Step 1 (A) Pick uniformly at random a permutation π
of {1, . . . , k}.
Commit secretly to the list of colors
π(g(1)), . . . , π(g(n)).

Step 2 (B) Among all edges of G , pick an edge {u, v}
uniformly at random and send u and v to A.

Step 3 (A) Reveal the colors π(g(u)) and π(g(v)) to B.

Step 4 (B) Accept if the two nodes are colored with distinct
colors from {1, ..., k} and reject, otherwise.

In order to diminish the error probability, the Protocol Coloring is
iterated m times, where m is the number of edges of G .
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Zero-knowledge protocols

The protocol Coloring achieves the following goals

(i) A can always verify correctly her identity.
(ii) If at each of the m iterations the colors committed to do not

form a legal k-coloring of G , then the probability that B
accepts is at most 1/2.

(iii) B is not able to extract any relevant information while
communicating with A.

(i): Follows by inspection of the protocol.
(ii): The probability of error is at most (1− 1

m )m ≤ 1
e ≤

1
2 .

(iii): B obtains nothing but mutually independent, uniformly
distributed pairs of distinct colors.
In fact, B could easily produce his own sequence of pairs of
colors that has the same distribution as the sequence evolving
during the protocol (= definition of zero-knowledge).
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Zero-knowledge protocols

Committing secretly

In the Protocol Coloring, A has to commit secretly to a sequence
of colors.

If the protocol were executed in real life, this could be done by
placing a corresponding number of colored tokens into opaque
containers such that A cannot change the arrangement afterwards
but may reveal the content of any container to B.

In electronic form, one would commit to the individual bits of a
word describing the sequence of colors.

Committing to a single bit can then be implemented for example
by a one-to-one function f that is easy to compute but where for a
given function value f (n) it is infeasible to determine whether n
has a certain property or not, say, is even or odd.

Here one has to assume that certain functions, e.g., the discrete
logarithm, have these properties.
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